Тёмная версия
Казахстан
Каталог   /   Компьютерная техника   /   Комплектующие   /   SSD-накопители

Сравнение GOODRAM PX700 SSDPR-PX700-01T-80 1 ТБ vs Kingston KC600 mSATA SKC600MS/1024G 1 ТБ

Добавить в сравнение
GOODRAM PX700 SSDPR-PX700-01T-80 1 ТБ
Kingston KC600 mSATA SKC600MS/1024G 1 ТБ
GOODRAM PX700 SSDPR-PX700-01T-80 1 ТБKingston KC600 mSATA SKC600MS/1024G 1 ТБ
Товар устарелСравнить цены 4
ТОП продавцы
нет в продаже
Типвнутреннийвнутренний
Объем1000 ГБ1000 ГБ
Форм-факторM.2mini-SATA
Интерфейс M.2PCI-E 4.0 4xSATA 3
Технические хар-ки
КонтроллерMaxio MAP1602A-F3CSilicon Motion SM2259
Тип памяти3D NAND3D TLC NAND
NVMe
Внешняя скорость записи6500 МБ/с520 МБ/с
Внешняя скорость считывания7400 МБ/с550 МБ/с
Ударостойкость при работе1500 G
Наработка на отказ1.5 млн. ч1 млн. ч
IOPS записи820 тыс80 тыс
IOPS считывания1000 тыс90 тыс
TBW600 ТБ600 ТБ
DWPD0.3 раз/день0.3 раз/день
Гарантия производителя5 лет5 лет
Общее
Шифрование данных
Охлаждение M.2графеновый радиатор
Размеры22x80 мм51x10 мм
Дата добавления на E-Katalogдекабрь 2023апрель 2021

Форм-фактор

Форм-фактор, в котором выполнен накопитель. Эта характеристика определяет размеры и форму модуля, а во многих случаях — еще и интерфейс подключения. При этом стоит отметить, что для внешних SSD (см. «Тип») форм-фактор является второстепенным параметром, от него зависят лишь общие габариты корпуса (и то весьма приблизительно). Поэтому обращать внимание на этот момент стоит прежде всего при выборе внутреннего SSD — такой накопитель должен соответствовать форм-фактору посадочного места под него, иначе нормальная установка будет невозможной.

Вот некоторые наиболее популярные варианты:

2,5". Один из самых распространенных форм-факторов для внутренних SSD. Изначально накопители на 2,5" применялись в ноутбуках, однако в наше время соответствующие слоты встречаются и в большинстве настольных ПК. Как бы то ни было, модули этого форм-фактора могут устанавливаться разными способами: одни крепятся в отдельные гнезда аналогично жестким дискам, другие (под интерфейс U.2, см. «Разъем») вставляются прямо в разъемы материнских плат.

M.2. Форм-фактор, применяемый в основном в высококлассных внутренних накопителях, сочетающих в себе миниатюрные размеры и значительные объемы. Использует собственный стандартный разъем подключения, поэтому этот разъем в характеристиках отдельно не указывается. Стоит учитывать, что стандарт M.2 сочетает в себе сразу два формата передачи данн...ых — SATA и PCI-E, и накопителем обычно поддерживается только один из них; подробнее см. «Интерфейс M.2». Как бы то ни было, благодаря небольшим габаритам подобные модули подходят как для настольных ПК, так и для ноутбуков.

mini-SATA (mSATA). Миниатюрный форм-фактор внутренних накопителей, идейный предшественник M.2. Изначально разрабатывался для нетбуков и ультракомпактных лэптопов, однако в наше время можно встретить и настольные ПК с разъемами mSATA на материнских платах. Впрочем, в связи с появлением и развитием более продвинутых вариантов этот форм-фактор постепенно выходит из употребления.

PCI-E карта (HHHL). Накопители, выполненные в виде плат расширения и подключаемые в слоты PCI-E (так же, как внешние видеокарты, звуковые платы и т. п.). Маркировка HHHL означает половинную длину и половинную высоту — таким образом, подобные модули подходят не только для полноразмерных ПК, но и для более компактных систем — к примеру, неттопов и даже некоторых ноутбуков. Интерфейс PCI-E позволяет достичь хороших скоростей обмена данными, к тому же именно через него реализуется NVMe (см. ниже). С другой стороны, эти возможности доступны и в более совершенных и компактных форм-факторах, в частности M.2. Поэтому SSD-модулей в формате карт PCI-E в наше время на рынке немного.

1,8". Форм-фактор миниатюрных накопителей, изначально созданный для ультракомпактных ноутбуков. Впрочем, в наше время SSD-модули этого формата можно встретить крайне редко, причем это в основном внешние модели. Это связано с появлением более удобных и совершенных форм-факторов для внутреннего применения — таких, как описанный выше M.2.

— 3,5". Наиболее крупный форм-фактор современных SSD-накопителей — размер такого модуля сравним с традиционным жестким диском для настольного ПК. В наше время практически вышел из употребления в связи с громоздкостью и отсутствием каких-либо заметных преимуществ перед более миниатюрными решениями.

Интерфейс M.2

Интерфейс подключения, поддерживаемый накопителем формата M.2 (см. «Форм-фактор»).

Все такие накопители используют стандартный аппаратный разъем, однако через этот разъем могут реализовываться разные электрические (логические) интерфейсы — либо SATA (обычно SATA 3), либо PCI-E (чаще всего в вариантах PCI-E 3.0 2x, PCI-E 3.0 4x, PCI-E 4.0 4x, PCI-E 5.0 4x). Разъем M.2 на материнской плате должен поддерживать соответствующий интерфейс — иначе нормальная работа SSD будет невозможна. Рассмотрим каждый вариант более детально.

Подключение по стандарту SATA 3 обеспечивает скорость передачи данных до 5,9 Гбит/с (около 600 МБ/с); оно считается очень простым вариантом и используется в основном в бюджетных M.2-модулях. Это связано с тем, что данный интерфейс изначально создавался под жесткие диски, и для более быстрых SSD-накопителей его возможностей уже может не хватать.

В свою очередь, интерфейс PCI-E дает более высокие скорости подключения и позволяет реализовывать специальные технологии вроде NVMe (см. ниже). В обозначении такого интерфейса указывается его версия и количество линий — например, PCI-E 3.0 2x означает версию 3 с двумя линиями передачи данных. По этому обозначению можно определить максимальную скорость подключения: PCI-E версии 3.0 дает чуть менее 1 ГБ/с на 1 линию, версии 4....0 — вдвое больше (до 2 ГБ/с), 5.0 — еще вдвое больше «четверки» (почти 4 ГБ/с). Таким образом, к примеру, для PCI-E 5.0 4x максимальная скорость обмена данными будет составлять около 15 ГБ/с (4 линии почти по 4 ГБ/с). При этом отметим, что более новые и быстрые накопители можно подключать к более ранним и медленным разъемам M.2 — разве что скорость передачи данных при этом будет ограничиваться возможностями разъема.

Контроллер

Модель контроллера, установленного в SSD-накопителе.

Контроллер представляет собой управляющую схему, которая, собственно, и обеспечивает обмен информацией между ячейками памяти и компьютером, к которой подключен накопитель. Возможности того или иного SSD-модуля (в частности, скорость чтения и записи) во многом зависят именно от этой схемы. Зная модель контроллера, можно найти подробные данные по нему и оценить возможности накопителя. Для несложного повседневного использования эта информация, как правило, не нужна, но вот профессионалам и энтузиастам (моддерам, оверклокерам) она может пригодиться.

В наше время высококлассные контроллеры выпускаются преимущественно под такими брендами: InnoGrit, Maxio, Phison, Realtek, Silicon Motion, Samsung.

Тип памяти

Тип основной памяти накопителя определяет особенности распределения информации по аппаратным ячейкам и физические особенности самих ячеек.

MLC. Память Multi Level Cell на основе многоярусных ячеек, каждая из которых содержит несколько уровней сигнала. В ячейках памяти MLC хранится по 2 бита информации. Имеет оптимальные показатели надёжности, энергопотребления и производительности. До недавних пор технология была популярна в SSD-модулях начального и среднего уровня, сейчас она постепенно вытесняется более совершенными вариантами на манер TLC или 3D MLC.

TLC. Эволюция технологии MLC. Один элемент флеш-памяти Triple Level Cell может хранить 3 бита информации. Подобная плотность записи несколько увеличивает вероятность возникновения ошибок по сравнению с MLC, кроме того, TLC-память считается менее долговечной. Положительной чертой характера данной технологии является доступная стоимость, а для повышения надёжности в SSD-накопителях с TLC-памятью могут применяться различные конструктивные ухищрения.

3D NAND. В структуре 3D NAND несколько слоев ячеек памяти размещаются вертикально, а между ними организованы взаимосвязи. Благодаря этому обеспечивается большая емкость хранилища данных без наращивания физических размеров накопителя и повышается производительность работы памяти за счет более коротких соединений для каждой ячейки памяти. В SSD-накопит...елях память 3D NAND может использовать чипы MLC, TLC или QLC — подробнее о них поведано в соответствующих пунктах справки.

3D MLC NAND. MLC-память многослойной структуры — её ячейки размещаются на плате не в один уровень, а в несколько «этажей». Как результат, производители добились повышения вместимости накопителей без заметного увеличения габаритов. Также для памяти 3D MLC NAND характерны более высокие показатели надёжности, чем в оригинальной MLC (см. соответствующий пункт), при меньшей стоимости производства.

3D TLC NAND. «Трёхмерная» модификация технологии TLC (см. соответствующий пункт) с размещением ячеек памяти на плате в несколько слоёв. Подобная компоновка позволяет добиться более высокой ёмкости при меньших размерах самих накопителей. В производстве такая память проще и дешевле однослойной.

3D QLC NAND. Тип-флеш памяти с четырёхуровневыми ячейками (Quad Level Cell), предусматривающий по 4 бита данных в каждой клетке. Технология призвана сделать SSD с большими объёмами массово доступными и окончательно отправить традиционные HDD в отставку. В конфигурации 3D QLC NAND память строится по «многоэтажной» схеме с размещением ячеек на плате в несколько слоёв. «Трёхмерная» структура удешевляет производство модулей памяти и позволяет увеличить объём накопителей без ущерба их массогабаритной составляющей.

3D XPoint. Принципиально новый тип памяти, кардинально отличающийся от традиционного NAND. В таких накопителях ячейки памяти и селекторы располагаются на пересечениях перпендикулярных рядов проводящих дорожек. Механизм записи информации в ячейки базируется на изменении сопротивления материала без использования транзисторов. Память 3D XPoint является простой и недорогой в производстве, к тому же она обеспечивает гораздо более высокие показатели скорости и долговечности. Приставка «3D» в названии технологии гласит о том, что ячейки на кристалле размещаются в несколько слоёв. Первое поколение 3D XPoint получило двухслойную структуру и выполнено по 20-нанометровому техпроцессу.

NVMe

Поддержка накопителем технологии NVMe.

NVMe представляет собой протокол обмена данными, разработанный специально для SSD-модулей и применяемый при подключении по шине PCI-E. Этот протокол был разработан для устранения недостатков, характерных для более ранних стандартов подключения (вроде SCSI или SATA) — прежде всего невысокой скорости, не позволявшей реализовать все возможности твердотельной памяти. NVMe учитывает ключевые достоинства SSD — независимый доступ, многопоточность и низкие задержки. Поддержка этого протокола встроена во все основные современные операционные системы, он работает не только через оригинальный интерфейс PCIe, но и через M.2 (см. «Форм-фактор»). А разъем U.2 вообще был создан специально для SSD-накопителей с NVMe (хотя наличие этого разъема само по себе еще не означает совместимости с данным протоколом).

Внешняя скорость записи

Наибольшая скорость в режиме записи характеризует скорость, с которой модуль может принимать информацию с подключенного компьютера (или другого внешнего устройства). Эта скорость ограничивается как интерфейсом подключения (см. «Разъем»), так и особенностями устройства самого SSD.

Внешняя скорость считывания

Наибольшая скорость обмена данными с компьютером (или другим внешним устройством), которую накопитель может обеспечить в режиме считывания; проще говоря — наибольшая скорость вывода информации с накопителя на внешнее устройство. Эта скорость ограничивается как интерфейсом подключения (см. «Разъем»), так и особенностями устройства самого SSD. Ее значения могут варьироваться от 100 – 500 МБ/с в наиболее медленных моделях до 3 Гб/с и выше в самых продвинутых.

Ударостойкость при работе

Параметр, определяющий стойкость накопителя к падениям и сотрясениям в процессе работы. Измеряется в G — единицах перегрузки, 1 G соответствует обычной силе земного притяжения. Чем выше число G — тем более устойчиво устройство к различного рода сотрясениям и тем меньше вероятность повреждения данных в нём, скажем, в случае падения. Этот параметр особенно важен для внешних накопителей (см. Тип).

Наработка на отказ

Время наработки накопителя на отказ — время, которое он способен непрерывно проработать без сбоев и неполадок; иными словами — время работы, по истечении которого появляется высокая вероятность появления сбоев, а то и выхода модуля из строя.

Как правило, в характеристиках указывается некоторое среднее время, выведенное по результатам условного тестирования. Поэтому фактическое значение этого параметра может отличаться от заявленного в ту или иную сторону; однако на практике этого момент не является особо значимым. Дело в том, что для современных SSD время наработки на отказ исчисляется миллионами часов, а 1 млн часов соответствует более чем 110 годам — при этом речь идет именно о чистом времени работы. Так что с практической стороны долговечность накопителя чаще ограничивается более специфическими параметрами — TBW и DPWD (см. ниже); а гарантия производителя вообще не превышает нескольких лет. Впрочем, данные по наработке на отказ в часах могут также пригодиться при выборе: при прочих равных большее время означает бОльшую надежность и долговечность SSD в целом.
GOODRAM PX700 часто сравнивают