Целеуказатель
Тип лазерного целеуказателя, предусмотренного в конструкции пирометра.
Лазерный целеуказатель позволяет видеть, куда именно направлен прибор и температуру какого именно участка он замеряет. Варианты же могут быть такими:
—
Одноточечный. Целеуказатель в виде единичного луча, указывающего в центр области измерения. Наиболее простой и недорогой вариант, однако не очень точный — в том плане, что пользователь не может точно оценить, какая зона на замеряемой поверхности попадает в поле зрения пирометра.
—
Двухточечный. Целеуказатель в виде двух лучей, указывающих на точки по краям области измерения. Расположение точек может быть горизонтальным (справа и слева) либо вертикальным (сверху и снизу). В любом случае такой целеуказатель уже позволяет определить размеры области, попадающей в поле зрения прибора. Однако обходится он несколько дороже одноточечного, а потому и встречается реже.
—
Многоточечный круговой. Целеуказатель в виде нескольких лучей, формирующих на замеряемой поверхности окружность из точек. Это наиболее сложный и дорогой, однако и наиболее точный вариант: окружность четко показывает расположение и размеры области измерения.
—
Отсутствует. Полное отсутствие какого-либо целеуказателя в конструкции; наводить такой прибор приходится «на глаз&raqu
...o;. Данный вариант встречается исключительно в отдельных моделях наиболее компактных приборов, которые в принципе не рассчитаны на измерения на больших расстояниях.Измерения t поверхности
Диапазон температур поверхности, которые прибор может эффективно замерить.
В целом смысл данного параметра достаточно очевиден. Отметим только, что обширный рабочий диапазон не всегда является преимуществом. Во-первых, он сказывается на стоимости прибора; во-вторых, при расширении диапазона может ухудшаться точность замеров. Так что при выборе стоит не гнаться за максимальным диапазоном температур, а учитывать реальные потребности: например, навряд ли имеет смысл выбирать пирометр с верхним пределом в 500 °С для замеров качества теплоизоляции и определения утечек тепла в жилых помещениях. Условно можно поделить пирометры на те которые для измерения
низких температур, и соответственно для
высоких.
Измерение относительной влажности
Диапазон относительной влажности воздуха, который прибор может эффективно замерить.
Замер влажности — дополнительная функция, позволяющая более точно оценить окружающие условия, например, микроклимат в том или ином помещении.
Измерение t окружающей среды
Диапазон температур окружающей среды (окружающего воздуха), которые прибор способен эффективно замерить.
Возможность замера температуры воздуха, предусматриваемая в некоторых моделях, позволяет применять пирометр в роли традиционного комнатного или уличного термометра. Эта функция может пригодиться, в частности, при поиске проблем с теплоизоляцией помещения.
Показатель визирования
Показатель визирования прибора.
Показателем визирования называют соотношение между расстоянием до поверхности, температура которой замеряется, и диаметром пятна, попадающего в поле зрения прибора. К примеру, если на расстоянии 2 м прибор будет охватывать зону в 10 см (0,1 м), то показатель визирования составит 2/0,1 = 20.
При выборе по данному параметру стоит учитывать предполагаемые условия замеров — размеры предметов, температуру которых предполагается замерять, и расстояния до них. При этом стоит помнить, что для точного замера измеряемая поверхность должна полностью занимать поле зрения пирометра — иначе прибор будет «видеть» также посторонние предметы, излучение которых будет искажать результаты замеров. Поэтому для больших расстояний рекомендуются модели с высокими показателями визирования — 40, 50 и т. д. Если же замеры планируется проводить на расстоянии одного-двух метров, а замеряемые объекты довольно крупные, стоит обратить внимание на модели с относительно небольшими значениями данного параметра — 10, 20 и т.п.
Точность измерений
Точность измерений температуры, обеспечиваемая пирометром, в градусах. Указывается по максимальному отклонению в ту или иную сторону, которое может выдать прибор при работе. Например, если в характеристиках указано 1,5 °С, а замер показал 80 °С, фактическая температура может составлять от 78,5 °С до 81,5 °С. Таким образом, чем меньше число в данном пункте — тем ниже погрешность и выше точность прибора. В то же время высокая точность соответствующим образом сказывается на стоимости.
Стоит отметить, что данное обозначение нередко оказывается весьма условным, и в подробных характеристиках могут содержаться различные уточнения по поводу погрешностей. Так, точность замеров нередко приводится одновременно в градусах и в процентах с формулировкой вроде «±2 °С или ±2 %, какое из значений окажется больше». Подробнее о погрешности в процентах см. п. «Точность измерений» ниже. А данная запись значит, что фактическая погрешность замеров в градусах может оказаться и выше той, что прямо заявлена в характеристиках — к примеру, 2 % от 500 °С дают отклонение ±10 °С. Кроме того, могут встречаться и другие уточнения — например, при минусовых температурах отклонение может составлять ±2 °С плюс 0,05 °С на каждый градус ниже нуля (то есть увеличиваться с понижением температуры). Так что если высокая точность замеров является для вас критичной — стоит внимательно читать документацию производителя.
Рабочая температура
Диапазон температур окружающего воздуха, при котором прибор может нормально выполнять свои функции.
Все современные пирометры гарантированно способны работать при комнатной температуре. При этом они обычно допускают отклонение от нее в пределах 15 – 20 °С — например, во многих моделях диапазон рабочих температур заявлен в пределах 0...40 °С. Так что обращать внимание на данный показатель стоит в том случае, если прибор планируется использовать при температурах ниже нуля, либо наоборот, в жарких условиях — далеко не каждая модель способна нормально работать при том или ином «экстриме».
Отметим, что выход за пределы диапазона допустимых температур далеко не обязательно приводит к поломке прибора. Однако отклоняться от данных рекомендаций не стоит хотя бы в свете того, что при нештатных условиях устройство начинает давать слишком высокую погрешность, и о какой-либо точности измерений говорить уже не приходится.
Функции
—
Регулировка коэффициента излучения. Возможность подстраивать прибор под коэффициенты излучения разных материалов. Коэффициент излучения определяет, сколько энергии та или иная поверхность излучает при определенной температуре; выражается он числами от 0 до 1 (коэффициент 1 имеет идеальное «абсолютно черное тело»). Не вдаваясь в излишние физические подробности, можно сказать, что если настройки прибора не соответствуют реальному коэффициенту излучения измеряемой поверхности, результаты замеров также будут отличаться от реальной температуры. Впрочем, большинство поверхностей, с которыми приходится на практике иметь дело — дерево, кирпичная кладка, пластик, покрытые краской и окислами металлы — имеют коэффициент излучения 0,8 – 0,9; именно на эти показатели по умолчанию настроены пирометры, и дополнительная коррекция при замерах в целом не требуется. А вот показатель излучения полированного металла и некоторых других материалов может быть заметно ниже данных значений, и под такие поверхности пирометр нужно настраивать отдельно. Ну и в любом случае, если для вас критичной является максимальная точность замеров — стоит выбрать прибор с регулировкой коэффициента излучения и настраивать его под каждую отдельную поверхность. Существуют специальные таблицы, позволяющие определить этот коэффициент для разных типов материалов.
—
Подсветка. Наличие в приборе собственной подсветки. В данном сл
...учае может подразумеваться как обычная, так и ультрафиолетовая подсветка. Первая фактически дополняет пирометр функцией фонарика и облегчает работу в условиях слабой освещённости. УФ-подсветка, в свою очередь, предназначена в основном для выявления утечек хладагента в кондиционерах и холодильных установках: многие хладагенты содержат добавку, светящуюся в УФ-лучах. Конкретный тип подсветки для каждой модели стоит уточнять отдельно.
— USB-порт. Стандартный USB-разъем для подключения устройства к компьютеру, ноутбуку и т.п. Как правило, для использования возможностей такого подключения нужно установить специальное ПО с сайта производителя. А возможности подключения могут быть разными. Так, нередко встречается функция записи, когда компьютер постоянно следит за показаниями прибора, выстраивая диаграмму или таблицу колебаний температуры. В других устройствах может предусматриваться возможность копировать результаты замеров из собственной памяти на ПК. Через порт USB может осуществляться также зарядка аккумулятора (см. «Питание») и настройка пирометра — например, регулировка коэффициента излучения (см. выше), калибровка, обновление прошивки и т. п. Конкретный набор возможностей в каждом случае стоит уточнять отдельно.
— Картридер. Наличие порта для карт памяти позволяет делать замеры с сохранением информации на внешний носитель. При этом, соответствующую информацию можно быстро перенести на ПК, ноутбук без использования кабелей и подключения пирометра (естественно при наличии картридера в устройстве).
— RS-232. Также известен как COM-порт. Служебный разъём для подключения пирометра к компьютерам и некоторым разновидностям специализированного оборудования. Данные через RS-232 могут передаваться в двух направлениях: внешнее устройство может вести запись показаний пирометра и с него же, при необходимости, можно управлять настройками прибора.
— Bluetooth. Технология беспроводной связи Bluetooth применяется для прямого соединения между различными устройствами. Теоретически способы использования такого соединения могут быть разными; конкретно же в данном случае Bluetooth используется в основном для подключения пирометра к смартфону, планшету или гаджету и передачи на этот гаджет результатов измерений. Для обработки результатов, как правило, нужно установить специальное приложение; оно обеспечивает различные дополнительные возможности и часто оказывается более удобным, чем обработка результатов вручную — особенно если приходится иметь дело с большим количеством данных.Термопара
Наличие термопары в комплекте поставки прибора.
Термопара представляет собой датчик для контактного измерения температуры, основанный на термоэлектрическом эффекте. Конструктивно такой датчик состоит из двух проводников из разных, специально подобранных материалов; одна пара концов у таких проводников соединена, другая выведена на измерительное устройство. При возникновении разницы температур между свободными и соединенными концами в проводниках возникает электродвижущая сила, по значению которой и определяется температура.
Термопары несколько менее удобны, чем бесконтактный замер: во-первых, они требуют контакта с поверхностью, температура которой измеряется, во-вторых, при замере нужно подождать, пока температура датчика сравняется с температурой поверхности. Тем не менее, подобные датчики имеют некоторые важные преимущества: в частности, они обеспечивают высокую точность (нередко — до сотых долей градуса) и могут работать в очень широком диапазоне температур. Поэтому в некоторых случаях использование термопары оказывается более предпочтительным, чем бесконтактный способ.