Номинальная мощность
Номинальная выходная мощность инвертора, выраженная в вольт-амперах (ВА). По сути, этот показатель аналогичен мощности в ваттах (Вт).
Под этим параметром подразумевается та мощность, которую устройство может выдавать потребителям в течение неограниченного времени. Выбирать по данному показателю нужно с тем расчетом, чтобы номинальная мощность инвертора перекрывала потребляемую мощность предполагаемой нагрузки примерно на 15-20 %. Также стоит учитывать, что некоторые электроприборы (в частности, агрегаты с электродвигателями — пылесосы, холодильники и т.п.) при запуске потребляют значительно больше энергии, чем после выхода на режим. Для подобной нагрузки нужно уточнять также пиковую мощность инвертора (см. соответствующий пункт) — она должна быть выше, чем пусковая мощность нагрузки.
Номинальная мощность
Номинальная выходная мощность инвертора, выраженная в ваттах (Вт).
Под этим параметром подразумевается та мощность, которую устройство может выдавать потребителям в течение неограниченного времени. Выбирать по данному показателю нужно с тем расчетом, чтобы номинальная мощность инвертора перекрывала потребляемую мощность предполагаемой нагрузки примерно на 15-20 %. Также стоит учитывать, что некоторые электроприборы (в частности, агрегаты с электродвигателями — пылесосы, холодильники и т.п.) при запуске потребляют значительно больше энергии, чем после выхода на режим. Для подобной нагрузки нужно уточнять также пиковую мощность инвертора (см. соответствующий пункт) — она должна быть выше, чем пусковая мощность нагрузки.
Пиковая мощность
Наибольшая суммарная выходная мощность в ваттах (Вт), которую инвертор способен выдавать на нагрузку в течение относительно короткого промежутка времени — порядка 2 – 3 секунд. Как правило, эта мощность больше номинальной (см. выше) на 30 – 50 %. Значение пиковой нагрузки может оказаться полезным при расчете совместной работы инвертора с теми приборами, которые потребляют большое количество энергии при запуске (пылесосами, скважинными насосами, электроинструментом и т.п.). Правило здесь простое — пиковая мощность инвертора должна быть не ниже пусковой мощности нагрузки.
Максимальный переменный ток
Максимальная сила тока в амперах (А), которую инвертор при работе способен выдать на выходе без перегрузок и сбоев.
Кол-во батарейных входов
Количество точек для подключения к инвертору аккумуляторов. В бытовых моделях обычно предусматривается один такой вход, в мощных и производительных моделях может быть два, а то и три батарейных входа. Наличие нескольких входов позволяет масштабировать систему, добавляя батареи без необходимости замены инвертора.
Макс. мощность
Максимально допустимая величина входной мощности от солнечных панелей, выраженная в киловаттах (кВт). Напомним, в 1 кВт содержится 1000 Вт.
Подбирая инвертор по этому показателю, отталкиваются от суммарной мощности солнечных батарей, задействованных в генерации электроэнергии. Притом нередко имеет смысл подбирать модели с входной мощностью инвертора немного меньше максимальной мощности солнечных панелей — например, если они часть времени затенены или по другим причинам не получают достаточно солнечного света в течение дня. Мощность солнечной батареи не должна превышать мощность инвертора больше, чем на 30 %. Впрочем, у некоторых инверторов превышение может быть всего 10 %, у других же — до 100 %. Этот момент лучше уточнять заблаговременно.
Рабочее напряжение PV
Рабочий диапазон инвертора обычно расположен между значениями напряжения старта и максимальным напряжением. Этот промежуток указывается в вольтах.
Функции
—
Функция ИБП. Инверторы с функцией ИБП автоматически переходят в режим автономной работы от аккумуляторных батарей при недостаточной генерации мощности от солнечных панелей или в случаях отключения основного источника сетевого питания. Тем самым обеспечивается резервирование нагрузки. Отметим, что переключение может происходить не мгновенно, а с определенной задержкой (порядка 10-30 мс).
—
Подключение генератора. Инверторы, поддерживающие функцию подключения генератора, значительно повышают надежность и эффективность работы автономных солнечных энергетических систем. На практике функция реализуема несколькими основными способами. Во-первых, система может автоматически включать и выключать генератор в зависимости от уровня заряда АКБ или текущей потребляемой мощности, обеспечивая эффективное использование ресурсов и минимизацию расхода топлива. Во-вторых, переключение нагрузки на генератор может осуществляться при дефиците выработки электричества от солнечных панелей. А в-третьих, генератор может применяться для поддержания оптимального уровня заряда АКБ, чтобы система находилась в полной готовности в любое время.
—
Параллельное подключение. Наличие в инверторе специальных разъемов, через которые можно включить два и больше устройства в единую электрическую сеть. Параллельное подключение применяется, когда один инвертор не в силах потянуть всю нагрузку о
...т солнечных батарей и входная мощность превышает возможности самого прибора.
— Встроенный мониторинг. Наличие на борту инвертора встроенного модуля мониторинга, который собирает сведения о продуктивности работы солнечных панелей, позволяет следить за производством и потреблением энергии, а также отслеживать рабочие показатели системы в целом. Причем нередко эти параметры можно просматривать и контролировать в режиме реального времени (в т.ч. через мобильное приложение для смартфона). Подключение модуля мониторинга к интернету обычно осуществляется по сети Wi-Fi.Интерфейсы управления
Интерфейсы подключения, предусмотренные в конструкции инвертора для солнечных панелей.
—
RS232. Специализированный коммуникационный интерфейс, используемый для прямого соединения инвертора с компьютером. Как правило, интерфейс предоставляет возможность производить круглосуточный мониторинг систем солнечной генерации с помощью локальной сети. Также разъем RS232 может служить для связи нескольких инверторов между собой, реже — для обновления программного обеспечения или сервисного тестирования.
—
RS485. Разъем, зачастую применяемый для связи нескольких инверторов с центральным хабом, который, в свою очередь, подключается к компьютеру. Такое подключение может оказаться полезным для настройки системы солнечной генерации или отправки мониторинговых данных по сети.
—
USB. Стандартный USB-порт часто служит для конфигурирования оборудования с помощью проводного подключения к компьютеру или для обновлений прошивки инвертора.
—
LAN (RJ45). Наличие разъема LAN (RJ45) в конструкции инвертора. Такие порты стандартно используются для проводного подключения в компьютерных сетях с помощью кабеля «витая пара».
—
Wi-Fi. Модуль связи Wi-Fi для беспроводного подключения инвертора к компьютеру, ноутбуку или мобильному телефону. Используя специализированное ПО, с инвертора мож
...но получать мониторинговые данные прямо «по воздуху» — передача информации по сети Wi-Fi избавляет от возни с проводами.
— Bluetooth. Вариант беспроводного сопряжения инвертора со смартфонами, планшетами или ноутбуками по сети Bluetooth. Благодаря синхронизации данных пользователь сможет контролировать показатели работы оборудования и удаленно управлять инвертором в зоне действия беспроводной сети Bluetooth.