Стандарт ATX 12В v.
Стандарт для блоков питания, дополняющий спецификации ATX касательно питания по линии 12 В. Введён в обиход со времён процессора Intel Pentium 4. В первой серии стандарта в основном использовалась линия +5 В, с версии 2.0 пошло внедрение линии +12 В для полноценного питания компонентов компьютера. Также во втором поколении появился 24-контактный разъём питания, используемый в большинстве современных материнских плат. Современным на момент 2025 года являются версии
3.0 и
3.1, в которых значительно улучшена поддержка резких скачков мощности (БП выдерживает кратковременные всплески нагрузки до двух-трёхкратного значения TDP видеокарты) и повышены требования к эффективности, что в свою очередь благополучно сказывается на общей стабильности линии питания.
SATA
Количество разъемов питания SATA, предусмотренное в БП.
В наше время SATA является стандартным интерфейсом для подключения внутренних жестких дисков, также он встречается и в других видах накопителей (SSD, SSHD и т.п.). Такой интерфейс состоит из разъема данных, подключаемого к материнской плате, и разъема питания, подключаемого к БП. Соответственно, в данном пункте речь идет о количестве штекеров питания SATA, предусмотренных в БП. Это количество соответствует количеству SATA-накопителей, которое можно одновременно запитать от данной модели.
MOLEX
Количество разъемов Molex (IDE), предусмотренное в конструкции блока питания.
Изначально такой разъем предназначался для питания периферии под интерфейс IDE, прежде всего жестких дисков. И хотя сам по себе IDE на сегодня является окончательно устаревшим и в новых комплектующих не применяется, однако разъем питания Molex продолжает устанавливаться в блоки питания, причем практически в обязательном порядке. Почти любой современный БП имеет хотя бы
1 – 2 таких разъема, а в высококлассных моделях это количество может составлять
7 и более. Такая ситуация связана с тем, что Molex IDE является довольно универсальным стандартом, и при помощи простейших переходников от него можно запитать комплектующие с другим интерфейсом питания. К примеру, существуют переходники Molex – SATA для накопителей, Molex – 6 pin для видеокарт и т.п.
PCI-E 8pin (6+2)
Количество разъемов питания PCI-E формата 8pin (6+2), предусмотренное в конструкции БП.
Дополнительные разъемы питания PCI-E (всех форматов) применяются для дополнительного питания тех видов внутренней периферии, для которой уже недостаточно 75 Вт, подаваемых непосредственно через гнездо PCI-E на материнской плате (характерный пример — видеокарты). В комплектующих для ПК встречается два вида таких разъемов — 6pin, обеспечивающий до 75 Вт дополнительного питания, и 8pin, дающий до 150 Вт. А штекеры 8pin (6+2), применяемые в блоках питания, являются универсальными: они могут работать и с 6-контактным, и с 8-контактным разъемом на плате расширения. Поэтому именно этот тип штекеров является наиболее популярным в современных БП.
Что касается количества, то в продаже можно встретить модели
на 1 разъем PCI-E 8pin (6+2),
на 2 таких разъема,
на 4 разъема, а в отдельных случаях —
на 6 и более. Несколько подобных штекеров могут пригодиться, к примеру, при подключении нескольких видеокарт — либо для мощного производительного видеоадаптера, оснащенного несколькими разъемами дополнительного питания PCI-E.
PCI-E 16pin
16-контактный разъём питания PCI-E призван заменить собой существующие 8-контактные аналоги. Он состоит из двенадцати линий для подачи тока и ещё четырёх для передачи данных. Разъём обеспечивает до 600 Вт дополнительного питания, что является четырёхкратным приростом по мощности в сравнении с 8-пиновыми версиями интерфейса. Дополнительные разъёмы PCI-E всех форматов применяются для питания тех видов внутренней периферии, которой уже недостаточно 75 Вт, подаваемых непосредственно через гнездо PCI-E на материнской плате.
Floppy
Наличие в БП хотя бы одного разъема питания Floppy.
Изначально этот разъем предназначался для питания дисководов под гибкие магнитные диски, отсюда и название. Также он известен под обозначением «mini-Molex». В любом случае, данный стандарт в целом считается устаревшим, однако он все еще используется некоторыми специфическими видами комплектующих, а потому — продолжает применяться в блоках питания.
Мощность +12V
Максимальная мощность, которую БП способен выдать на линию питания +12V.
Подробнее о линиях питания в целом см. «Максимальные ток и мощность». Здесь же стоит сказать, что 12 В — это самое популярное напряжение среди компьютерных разъемов питания. Оно применяется почти во всех таких коннекторах (за единичными исключениями), а некоторые штекеры (например, дополнительное питание PCI-E на 6 или 8 разъемов) используют только 12-вольтовые линии — причем именно в формате +12V. Так что данный показатель является одной из важнейших характеристик любого БП.
Отметим, что многие БП имеют несколько раздельных линий питания +12V. В таких случаях здесь указывается общая мощность, которая, как правило, делится между линиями поровну.
Мощность +3.3V +5V
Максимальная мощность, которую БП способен выдать на линии питания +3,3V и +5V.
Подробнее о линиях питания в целом см. «Максимальные ток и мощность». Здесь же отметим, что линии питания +3,3V и +5V применяются как в общем коннекторе для материнской платы (на 20 или на 24 пина), так и в специализированных штекерах — в частности, разъеме питании SATA (оба) и Molex (только +5V, в дополнение к +12V). Мощность этих линий — достаточно специфический параметр, редко требующийся на практике; она, как правило, одинакова для обоих напряжений, так что ее указывают в общем пункте.
Безопасность
Схемы защиты, предусмотренные в блоке питания. Помимо описанных выше OVP (защиты от перенапряжения), OPP (защиты от избыточного тока/мощности) и SCP (защиты от короткого замыкания), в современных БП могут предусматриваться такие функции безопасности:
— OCP. OCP в блоках питания следит за током на линиях питания и отключает БП, если потребление становится опасно высоким, чтобы не перегреть провода, разъёмы и силовые элементы внутри самого блока и не «потянуть» за собой комплектующие. В отличие от OPP, которая срабатывает по общей мощности всего блока, OCP чаще ловит локальную проблему на конкретной линии или группе выходов, а в сравнении с SCP это более «ранняя» защита: она реагирует ещё до полноценного короткого замыкания, когда сопротивление не нулевое, но ток уже ушёл в риск. Из живых примеров — неудачный разгон видеокарты, повреждённый кабель питания GPU или редкий, но неприятный случай с перегибом/подплавлением разъёма: OCP выключит блок быстрее, чем успеет появиться запах пластика.
— UVP. UVP контролирует просадку напряжения на выходах блока питания и отключает его, когда значения становятся слишком низкими для стабильной работы железа, чтобы избежать зависаний, ошибок записи на диск и «полуживых» режимов, которые особенно неприятны для материнской платы и накопителей. В паре с OVP эти защиты работают как «рамки»: OVP ловит опасный рост, UVP — опасную просадку, а SIP чаще пытается сгладить саму проблему питания ещё на входе. Типичный пример — перегр...узка слабого БП, плохая сеть или включение мощной техники в доме: вместо нестабильной работы и странных ребутов UVP предпочитает выключить систему предсказуемо.
— OTP. OTP отслеживает температуру внутри блока питания и выключает его, когда нагрев становится критическим, защищая трансформатор, силовые ключи и конденсаторы от ускоренного износа и аварий. Это более «жёсткая» страховка, чем AFC: автоматическая регулировка вентилятора старается не допустить перегрева, а OTP вступает в игру, когда охлаждение уже не справилось — например, если корпус забит пылью, вентилятор остановился, БП стоит в тесном отсеке или ПК долго работает под высокой нагрузкой летом. В реальной жизни OTP нередко спасает в момент, когда пользователь случайно перекрыл приток воздуха или вентилятор начал умирать: вместо дыма и деградации компонентов блок просто отключится.
— SIP. SIP в блоках питания рассчитана на «грязную» сеть: кратковременные скачки, перепады и пусковые броски, которые возникают, когда в доме включается компрессор холодильника, насос, кондиционер или когда сеть нестабильна. По смыслу это ближе к сглаживанию входных проблем, чем к OVP/UVP, которые уже контролируют выход и при опасных значениях просто отключают БП; SIP старается повысить живучесть системы к реальным бытовым просадкам и всплескам, но при этом не заменяет полноценный внешний стабилизатор или хорошую защиту по питанию, если сеть действительно плохая. Типичный пример — частный дом или старый жилфонд: SIP помогает переживать мелкие «пинки» сети без внезапных ребутов.
— NLO (No-Load Operation). Способность блока питания корректно запускаться и работать даже при нулевой или слишком маленькой нагрузке на выходах, без «плавающих» напряжений и нестабильности. В отличие от защит вроде OVP/OCP/SCP, которые реагируют на аварии (перенапряжение, перегрузка, короткое замыкание) и часто отключают БП, NLO про устойчивость режима, когда потребление минимальное или нагрузка временно отсутствует, что снижает риск странных сбоев при тестировании или в энергосберегающих сценариях. На практике NLO полезен, когда блок проверяют на столе без подключённого ПК, когда система стартует с очень малым набором комплектующих, а также когда компьютер большую часть времени простаивает в простое и потребление проседает до «копеечного» уровня.
— AFC. AFC в блоках питания управляет оборотами вентилятора по температуре и нагрузке: на простое он крутится медленнее и тише, а при росте потребления ускоряется, чтобы вовремя вывести тепло. Это не «аварийная» защита вроде OTP, которая выключает блок при перегреве, а профилактика: AFC помогает держать температуру в норме и тем самым косвенно продлевает ресурс компонентов БП. Пример из жизни — ночью в тихой комнате ПК не гудит на низкой нагрузке, а во время игры охлаждение автоматически усиливается, чтобы не довести дело до срабатывания OTP.