Основной дисплей
Характеристики основного (а чаще всего — и единственного) дисплея, установленного в аппарате.
Помимо основных свойств — таких, как диагональ, разрешение (по нему экраны условно делятся на
HD,
Full HD,
2K и более), тип матрицы (чаще всего
IPS,
OLED,
AMOLED,
Super AMOLED,
Dynamic AMOLED,), в данном списке могут указываться и более специфические особенности. Среди них — форма поверхности (
плоская или
изогнутая), наличие и версия покрытия
Gorilla Glass (включая топовые
v6 и
Victus), поддержка
HDR и частота развертки (частота выше
60 Гц считается
высокой, а именно
частота 90 Гц,
120 Гц и
144 Гц). Вот более детальное описание характеристик, актуальных для современных дисплеев:
— Диагональ. Традиционно диагональ экрана указывается в дюймах. Более крупный дисплей удобнее в использовании: на нем помещается больше информации, а само изо
...бражение лучше читается. Обратной стороной увеличения диагонали является увеличение габаритов устройства. На сегодня маленькими считаются смартфоны с экранами 5" и меньше. 5.6 – 6" и до 6.5" — это уже средний формат. Также немало современных моделей имеет размер 6.5". Классическим телефонам без сенсорных дисплеев крупная диагональ не требуется — в них она обычно не превышает 3".
— Разрешение. Разрешение экрана указывается исходя из его размеров по вертикали и горизонтали в точках (пикселях). Чем больше эти размеры (при той же диагонали) — тем более детализированной и сглаженной выглядит картинка и тем менее на ней заметны отдельные пиксели. С другой же стороны, увеличение разрешения повышает как стоимость самого дисплея, так и требования к аппаратной части телефона. Также стоит отметить, что одно и то же разрешение на экранах разного размера смотрится по разному; так что при оценке детализации стоит учитывать не только данный параметр, но и число PPI (см. ниже).
— PPI. Плотность точек (пикселей) на экране аппарата. Указывается по числу точек на дюйм (points per inch) — количеству пикселей на каждый горизонтальный или вертикальный отрезок в 1". Этот показатель зависит одновременно от диагонали и разрешения, однако в итоге именно число PPI определяет, насколько сглаженным и детализированным получается изображение на дисплее. Для сравнения отметим, что на расстоянии около 25 – 30 см от глаз плотность в 300 PPI и более делает отдельные пиксели практически незаметными для человека с нормальным зрением, картинка воспринимается как целостная; на бОльших расстояниях подобный эффект заметен и при меньшей плотности точек.
— Тип матрицы. Технология, по которой выполнена матрица экрана. Этот параметр указывается только для относительно продвинутых дисплеев, превосходящих по характеристикам простейшие ЖК-экраны кнопочных телефонов. Наибольшее распространение в наше время получили такие типы матриц:
- IPS. Наиболее популярная технология для экранов современных смартфонов. Обеспечивает весьма достойное качество изображения, углы обзора и скорость отклика, хотя и нескольку уступает по этим параметрам многим более продвинутым вариантам (см. ниже). С другой стороны, IPS имеет и немаловажные преимущества: долговечность, равномерный износ, а также довольно невысокую стоимость. Благодаря этому подобные экраны можно встретить во всех категориях смартфонов — от бюджетных до топовых.
- AMOLED. Технология матриц на основе органических светодиодов (OLED), разработанная компанией Samsung. Одним из ключевых отличий таких матриц от более традиционных дисплеев является то, что они не требуют внешней подсветки: каждый пиксель сам по себе является источником света. Из-за этого энергопотребление такого экрана зависит от особенностей отображаемого изображения, однако в целом оно получается довольно невысоким. Кроме того, AMOLED-матрицы отличаются широкими углами обзора, отличными показателями яркости и контрастности, высоким качеством цветопередачи и небольшим временем отклика. Благодаря этому подобные экраны продолжают применяться в современных смартфонах, несмотря на появление более продвинутых технологий; их можно встретить даже в моделях топового сегмента. Главным недостатком данной технологии являются относительно высокая стоимость и неравномерный износ пикселей: точки, которые дольше и чаще работают на высокой яркости, выгорают быстрее. Впрочем, обычно этот эффект становится заметен лишь спустя несколько лет интенсивного использования — срок, сравнимый с эксплуатационным ресурсом самого смартфона.
- AMOLED (LTPO). Продвинутая разновидность AMOLED-панелей с возможностью динамической подстройки частоты обновления в зависимости от выполняемых задач. Аббревиатура LTPO (Low Temperature Polycrystalline Oxid) расшифровывается как «низкотемпературный поликристаллический оксид». За этим термином стоит комбинация традиционной технологии LTPS и тонкого слоя оксидной пленки TFT с добавлением гибридно-оксидного поликристаллического кремния для управления цепями переключения развертки. Панели AMOLED (LTPO) на порядок снижают уровень энергопотребления гаджета. Так, при выполнении активных действий экран устройства использует максимальную или высокую частоту обновления, а во время просмотра картинок или чтения текста дисплей снижает показатель до минимума.
- Super AMOLED. Улучшенная версия описанной выше технологии AMOLED Одним из ключевых усовершенствований стало то, что в экранах Super AMOLED нет прослойки воздуха между сенсорным слоем и расположенным под ним дисплеем. Это позволило еще более повысить яркость и качество картинки, увеличить скорость и надежность срабатывания сенсора и одновременно снизить энергопотребление. Недостатки у таких матриц те же, что и у оригинальных AMOLED. В целом они получили довольно широкое распространение; большинство смартфонов с подобными экранами относятся к средней и топовой категории, однако встречаются и бюджетные модели.
- OLED. Различные типы матриц, основанные на использовании органических светодиодов; по сути — аналоги AMOLED и Super AMOLED, выпускаемые не Samsung, а другими компаниями. Конкретные особенности таких экранов могут быть разными, однако в большинстве своем они, с одной стороны, дороже популярных IPS, с другой — обеспечивают более высокое качество изображения (включая яркость, контрастность, углы обзора и достоверность цветопередачи), а также потребляют меньше энергии и имеют небольшую толщину. Главные недостатки OLED-экранов — высокая цена (которая, впрочем, постоянно снижается по мере развития и совершенствования технологии), а также подверженность органических пикселей выгоранию при длительной трансляции статичных изображений или картинки со статичными элементами (панель уведомлений, экранные кнопки и т.п.).
- OLED (полимерный). Экраны на органических светодиодах (OLED), в которых для основы используется не стекло, а прозрачный полимерный материал. Подчеркнем, что речь идет именно об основе матрицы; сверху она прикрывается таким же стеклом, как и в других типах экранов. Как бы то ни было, подобная конструкция дает ряд преимуществ по сравнению с традиционными «стеклянными» матрицами: она обеспечивает дополнительную стойкость к ударам и отлично подходит для создания изогнутых дисплеев. С другой стороны, по оптическим свойствам пластик все же не дотягивает до стекла; так что экраны данного типа по качеству изображения нередко уступают своим «ровесникам», выполненным по традиционной OLED-технологии, а при схожем качестве картинки — стоят заметно дороже.
- OLED (LTPO). OLED-матрицы с адаптивной частотой обновления, изменяемой в широком диапазоне исходя из выполняемых задач. В играх экраны с LTPO-технологией автоматически поднимают частоту развертки до максимальных значений, при просмотре статичных изображений — снижают ее вплоть до минимума (от 1 Гц). В существе технологии лежит традиционная LTPS-подложка с тонкой оксидной пленкой TFT поверх основания тонкопленочных транзисторов. Возможность контроля потоков электронов обеспечивает динамическое управление частотой обновления. Конкурентным преимуществом OLED (LTPO) можно назвать сниженное энергопотребление.
Помимо этого, экраны в современных смартфонах могут выполняться по таким технологиям:
- PLS. Вариация технологии IPS, созданная компанией Samsung. По некоторым показателям — в частности, яркости, контрастности и углам обзора — превосходит оригинал, при этом обходится дешевле в производстве и позволяет создавать гибкие дисплеи. Впрочем, по ряду причин особой популярностью не пользуется.
- Super AMOLED Plus. Дальнейшее развитие описанной выше технологии Super AMOLED. Позволяет создавать еще более яркие, контрастные и в то же время тонкие и энергоэффективные экраны. Впрочем, чаще всего такие экраны в наше время обозначаются просто как «Super AMOLED», без приставки «Plus».
- Dynamic AMOLED. Еще одно усовершенствование AMOLED, представленное в 2019 году. Основными особенностями таких матриц являются увеличенная яркость без значительного роста энергопотребления, а также 100 % охват цветового пространства DCI-P3 и совместимость с HDR10+; последние два момента, в частности, позволяют максимально качественно воспроизводить на таких экранах современное высокобюджетное кино. Главный недостаток Dynamic AMOLED традиционен — высокая цена; так что встречаются такие матрицы в основном в топовых моделях.
- Super Clear TFT. Совместная разработка Samsung и Sony, которая появилась как вынужденная альтернатива Super AMOLED-матрицам (спрос на них одно время значительно превышал возможности по производству). Правда, качество изображения у Super Clear TFT несколько ниже — зато и в производстве такие матрицы заметно проще и дешевле, а по характеристикам они все же превосходят большинство IPS-экранов. Впрочем, в наше время данная технология встречается редко, уступая позиции AMOLED в разных версиях.
- Super LCD. Еще одна альтернатива различным видам технологии AMOLED; применяется преимущественно в смартфонах HTC. Аналогично Super AMOLED, в таких экранах нет лишней воздушной прослойки, что положительно сказывается как на качестве изображения, так и на четкости срабатываний сенсора. Заметным достоинством Super LCD является хорошая энергоэффективность, особенно при отображении яркого белого цвета; а вот по общей насыщенности цветов (включая черный) данная технология заметно уступает AMOLED.
- LTPS. Продвинутая разновидность TFT-матриц, созданная на основе т.н. низкотемпературного поликристаллического кремния. Позволяет без особых трудностей создавать экраны с очень высокой плотностью пикселей (более 500 PPI — см. выше), добиваясь высоких разрешений даже при небольшой диагонали. Кроме того, часть управляющей электроники можно встроить прямо в матрицу, уменьшив общую толщину дисплея. Главным недостатком LTPS является сравнительно высокая стоимость, однако в наше время такие экраны можно встретить даже в бюджетных смартфонах.
- S-PureLED. Технология, созданная компанией Sharp и применяемая преимущественно в ее смартфонах. Собственно, технология самих матриц в данном случае носит название S-CG Silicon TFT, а S-PureLED — это название специального слоя, применяемого для повышения прозрачности. S-CG Silicon TFT позиционируется создателями как модификация описанной выше технологии LTPS, позволяющая еще более увеличить разрешение дисплея и в то же время встроить в него больше управляющей электроники (вплоть до целого «процессора на стекле») без увеличения толщины. Разумеется, и стоят такие экраны недешево.
- E-Ink. Матрицы на основе так называемых «электронных чернил» — технологии, распространенной прежде всего в электронных книгах. Главная особенность такого экрана заключается в том, что при его работе энергия тратится только на изменение изображения; неподвижная картинка питания не требует и может оставаться на дисплее даже при полном отсутствии энергии. Кроме того, по умолчанию E-Ink матрицы не светятся сами, а отражают наружный свет — так что собственная подсветка для них не обязательна (хотя она может предусматриваться для работы в сумерках и темноте). Все это обеспечивает солидную экономию энергии; а для некоторых пользователей такие экраны чисто субъективно более комфортны и менее утомительны, чем традиционные матрицы. С другой стороны, технология E-Ink имеет и серьезные недостатки — это прежде всего большое время отклика, а также сложность и дороговизна цветных дисплеев в сочетании с низким качеством цветопередачи на них. В свете этого в смартфонах такие матрицы являются очень редким и экзотическим вариантом.
— Частота развертки. Максимальная частота обновления дисплея, иными словами — наибольшая частота кадров, которую он способен эффективно воспроизвести. Чем выше этот показатель — тем более плавным и сглаженным получается изображение, тем меньше заметны «эффект слайдшоу» и размытие предметов при движении на экране. В то же время стоит учитывать, что частота обновления в 60 Гц, поддерживаемая практически любым современным смартфоном, вполне достаточна для большинства задач; даже видеоролики высокого разрешения в наше время почти не используют большую частоту кадров. Поэтому частота развертки в нашем каталоге специально уточняется в основном для экранов, способных выдать более 60 Гц (в некоторых моделях — до 240 Гц). Такая высокая частота может пригодиться в играх и некоторых других задачах, также она улучшает общие впечатления от интерфейса ОС и приложений — движущиеся элементы в таких интерфейсах перемещаются максимально плавно и без смазывания.
— HDR. Технология, позволяющая расширить динамический диапазон экрана. В данном случае подразумевается диапазон яркости — проще говоря, наличие HDR позволяет экрану отображать более яркий белый и более темный черный цвет, чем на дисплеях без поддержки этой технологии. На практике это дает заметное повышение качества картинки: улучшается насыщенность и достоверность передачи различных цветов, а детали на очень светлых или очень темных участках кадра не «тонут» в белом или черном цвете. Однако все эти преимущества становятся заметны лишь при условии, что воспроизводимый контент изначально записан в HDR. В наше время применяется несколько разновидностей данной технологии, вот их особенности:
- HDR10. Исторически первый из потребительских HDR-форматов, чрезвычайно популярный и в наши дни: в частности, поддерживается практически всеми стриминговыми сервисами с HDR-контентом и стандартно применяется для такого контента на дисках Blu-ray. Обеспечивает глубину цвета в 10 бит (более миллиарда оттенков). При этом на аппаратах с этой технологией можно воспроизводить и контент формата HDR10+ (см. ниже) — разве что его качество будет ограничиваться возможностями оригинального HDR10.
- HDR10+. Усовершенствованная версия HDR10. При той же глубине цвета (10 бит) использует так называемые динамические метаданные, позволяющие передавать информацию о глубине цвета не только для групп из нескольких кадров, но и для отдельно взятых кадров. Благодаря этому достигается дополнительное улучшение цветопередачи.
- Dolby Vision. Продвинутый стандарт, используемый, в частности, в профессиональном кинематографе. Позволяет добиться глубины цвета в 12 бит (почти 69 млрд оттенков), использует упомянутые выше динамические метаданные, к тому же дает возможность передавать в одном видеопотоке сразу два варианта изображения — HDR и обычное (SDR). При этом Dolby Vision основан на той же технологии, что и HDR10, поэтому в современной электронике данный формат нередко сочетается с HDR10 или HDR10+.
— Поддержка DC Dimming. Дословно с английского Direct Current Dimming переводится как затемнение постоянным током. Эта технология призвана минимизировать мерцание в OLED и AMOLED-экранах, что, в свою очередь, снижает нагрузку на зрительный аппарат пользователя и бережет зрение. «Немерцающий» эффект достигается посредством прямого управления яркостью светодиодов системы подсветки путем изменения величины подаваемого на них напряжения. За счет этого и обеспечивается уменьшение интенсивности свечения экрана.
— Изогнутый экран. Экран, имеющий загнутые края, на которые заходит отображаемое изображение. Иными словами, изогнутым в данном случае является не только стекло, но и часть активной матрицы. Дисплеи, в которых изгиб имеют оба края, иногда обозначают также термином «2.5D-стекло»; также встречаются аппараты, где экран загнут только с одной стороны. В любом случае данная особенность придает смартфону интересный внешний вид и улучшает видимость изображения с некоторых ракурсов, однако заметно сказывается на стоимости и может создавать неудобства при удержании (особенно без чехла). Так что перед покупкой модели с таким оснащением в идеале стоит подержать аппарат в руке и убедиться, что он достаточно удобен.
— Стекло Gorilla Glass. Специальное высокопрочное стекло, используемое в качестве покрытия дисплея. Характеризуется выносливостью и стойкостью к царапинам, во много раз превосходит обычное стекло по этим показателям. Широко применяется в смартфонах, где крупные размеры экранов выдвигают повышенные требования к надежности покрытия. В современных телефонах могут встречаться разные версии этого стекла, вот особенности разных вариантов:
- Gorilla Glass v3. Наиболее старая из актуальных на сегодня версий — выпущена в 2013 году; сейчас встречается в основном среди недорогих или устаревших устройств. Тем не менее, у этого покрытия есть и несомненные достоинства: это первое поколение Gorilla Glass, где создатели сделали заметный акцент на стойкости к царапинам от ключей, монет и других предметов, с которыми телефон может «столкнуться» в кармане или сумке. По этому показателю версия v3 оставалась непревзойденной аж до выпуска Gorilla Glass Victus в 2020 году.
- Gorilla Glass v4. Версия, вышедшая в 2014 году. Ключевой особенностью стало то, что при разработке этого покрытия основное внимание было уделено стойкости к ударам (тогда как предыдущие поколения делали упор в основном на сопротивление царапинам). В итоге стекло получилось вдвое прочнее, чем в версии 3, притом что его толщина составляет всего 0,4 мм. Но вот стойкость к царапинам, по сравнению с предшественником, несколько снизилась.
- Gorilla Glass v5. Усовершенствование «гориллы» выпущенное в 2016 году и направленное на дальнейшее повышение стойкости к ударам. Согласно данным разработчиков, стекло версии v5 получилось в 1,8 раза прочнее предшественника, оно оставалось целым в 80 % падений с высоты в 1,6 м «лицом вниз» на шероховатую поверхность (а гарантированная ударостойкость составляет 1,2 м). Также несколько улучшилась стойкость к царапинам, однако до показателей v3 этот материал все равно не дотягивает.
- Gorilla Glass v6. Версия, представленная в 2018 году. Для этого покрытия заявлено повышение прочности в 2 раза по сравнению с предшественниками, а также способность переносить многократные падения на жесткую поверхность (при испытаниях стекло v6 успешно перенесло 15 падений с высоты 1 м). Максимальная высота падения (однократного) с гарантированным сохранением целостности заявлена на уровне 1,6 м. Устойчивость к царапинам улучшений практически не получила.
- Gorilla Glass 7. Первоначальное название для Gorilla Glass Victus — см. ниже.
- Gorilla Glass Victus. «Наследник» Gorilla Glass 6, выпущенный летом 2020 года. В этом покрытии создатели уделили внимание не только повышению общей прочности, но и улучшению стойкости к царапинам. По последнему показателю Victus превосходит даже версию v3, не говоря уже о более чувствительных материалах (а по сравнению с v6 заявлено повышение стойкости к царапинам в два раза). Что касается прочности, то она позволяет гарантированно переносить однократные падения с высоты до 2 м, а также до 20 последовательных падений с высоты в 1 м.
Защита экрана
Как правило,
для защиты экранов современных смартфонов применяются специальные особо прочные стекла. Такое покрытие может оказаться в несколько раз крепче обычного стекла и отличается повышенной стойкостью к царапинам и ударам.
В сегменте мобильных устройств встречаются различные стекла для защиты экранов. Так, в смартфонах Apple поверх дисплея установлен «керамический щит» Ceramic Shield, в OPPO и OnePlus — закаленное стекло Asahi Glass, в Huawei — фирменное покрытие Kunlun Glass, в топовых моделях от Xiaomi — стекло Xiaomi Shield Glass, а во многих мобильных устройствах начально-среднего уровня родом из Поднебесной — покрытие Panda Glass. В общем же на рынке доминирует продукция компании Corning, представленная небезызвестными стеклами Gorilla Glass. Встретить можно несколько поколений этого стекла, вот их основные особенности:
— Gorilla Glass v3 (2013 год). Несмотря на «почтенный возраст», отличается высокой стойкостью к царапинам — превзойти этот показатель удалось лишь 7 лет спустя в версии Victus.
— Gorilla Glass v4 (2014 год). По сравнению с предыдущей версией имеет вдвое большую стойкость к ударам в сочетании с меньшей толщиной (0.4 мм). А вот устойчивость к царапинам несколько снизилась.
— Gorilla Glass v5 (2016 год). Улучшения в этой версии коснулись дальнейшего повышения прочности — она в 1.8 раз выше, чем у предшественника, и позволяет гарантированно переносить падения с высоты 1.2 м (а
...также до 80 % падений с высоты 1.6 м, что приблизительно соответствует уровню человеческого уха).
— Gorilla Glass v6 (2018 год). Еще одна версия с упором на увеличение ударостойкости. Вдвое прочнее 5-й версии, гарантированно выдерживает однократные падения с высоты 1.6 м и многократные (до 15 раз подряд) с высоты 1 м.
— Gorilla Glass v7 (2020 год). 7-я версия защитного стекла от Corning получила название Gorilla Glass Victus и дебютировала в 2020 году. Подробнее о ней см. ниже.
— Gorilla Glass Victus (2020 год). После v3 это первая версия Gorilla Glass, в которой удалось превзойти показатели стойкости стекла к царапинам. А ударостойкость Victus заявлена на уровне 2 м при однократном падении и 1 м при многократных (до 20 раз подряд).
— Gorilla Glass Victus+ (2022 год). Улучшенная модификация защитного стекла Gorilla Glass Victus, приближенная к керамике по устойчивости к царапинам. Так, в соответствии с минералогической шкалой твердости Мооса стекло начинает царапаться на уровне 7/10, тогда как оригинальная версия Victus царапается на уровне 6/10.
— Gorilla Glass Victus 2 (2022 год). Основной упор во второй редакции Victus сделали на обеспечение максимальной защиты при падениях смартфона на бетонные поверхности — оно выдерживает многократные «приземления» с высоты порядка 1 м. Также для этого поколения заявлена ударостойкость при однократном падении с 2-метровой высоты. При разработке защитного стекла Gorilla Glass Victus 2 были учтены набор веса и увеличение габаритов современных смартфонов.
— Gorilla Glass Armor (2024 год). Стекло от Corning с улучшенной стойкостью к образованию царапин. Вместе с тем Gorilla Glass Armor примерно на 75 % сокращает бликование экрана смартфона, обеспечивая тем самым улучшение качества изображения. Четверть составляющих в «рецептуре» приготовления закаленного стекла — это переработанные материалы, что вносит вклад в заботу об окружающей среде.Яркость
Максимальная яркость в нитах, обеспечиваемая экраном смартфона.
Чем ярче дисплей, тем более читабельной остаётся на нём картинка под интенсивным внешним освещением (к примеру, на улице в ясную солнечную погоду). Также высокая яркость важна для корректного отображения HDR-контента. Однако большой запас по данному показателю сказывается на стоимости и энергопотреблении экрана. Производители могут указывать стандартное, максимальное и пиковое значение яркости. При этом между максимальной и пиковой яркостью нельзя поставить знак равенства. Первая обозначает способность экрана выдавать указанную яркость по всей его площади, в то время как пиковая — на ограниченном участке и непродолжительное время (в основном для HDR-контента).
Соотношение дисплей/корпус
Соотношение между площадью экрана и общей площадью передней панели телефона. Проще говоря, данная характеристика описывает, какая часть передней панели занята экраном; остальное приходится на рамку.
Данный показатель приводится исключительно для смартфонов с сенсорными экранами — именно для них он наиболее актуален. Чем больший процент корпуса занимает экран — тем тоньше рамка, тем аккуратнее выглядит смартфон и тем удобнее работать с ним одной рукой. Что касается конкретных цифр, то средними значениями являются 80 – 85 %, значения выше позволяют говорить о
тонкой рамке, а более 9 0% — о
«безрамочной» конструкции.
Отдельно отметим, что данный параметр никак не связан с соотношением сторон экрана. Соотношение сторон описывает только сам дисплей — а именно его пропорции, соотношение между большей и меньшей стороной прямоугольника.
Модель процессора
Наибольшей популярностью в наше время пользуются чипы от
Qualcomm и
MediaTek, немного реже встречаются процессоры от
Unisoc. В Qualcomm можно выделить по несколько процессоров каждой серии, а именно
Snapdragon 778G,
Snapdragon 7 Gen 1,
Snapdragon 7+ Gen 2,
Snapdragon 7s Gen 2,
Snapdragon 7 Gen 3,
Snapdragon 7+ Gen 3,
Snapdragon 865,
Snapdragon 870,
Snapdragon 888,
Snapdragon 8 Gen 1,
Snapdragon 8+ Gen 1,
Snapdragon 8 Gen 2,
Snapdragon 8 Gen 3,
Snapdragon 8s Gen 3,
Snapdragon 8 Elite. А у Mediatek это бюджетная серия
MediaTek Helio P и линейка продвинутых чипсетов
MediaTek Dimensity (
Dimensity 1000,
Dimensity 7000,
Dimensity 8000,
Dimensity 9000).
Зная название моде
...ли процессора (CPU), установленного в смартфоне, можно найти подробные данные по конкретному CPU и оценить его уровень и общие возможности. Это особенно актуально в свете того, что эти возможности зависят не только от числа ядер и тактовой частоты, но и от специфических нюансов конструкции.Частота процессора
Тактовая частота процессора, которым оснащен аппарат. Для многоядерных процессоров, которые стандартно используются в современных смартфонах, подразумевается частота каждого отдельного ядра; а если процессор имеет ядра с разной частотой (см. «Кол-во ядер») — как правило, приводится максимальный показатель.
В целом для
мощных производительных смартфонов характерна высокая частота процессора. Однако стоит учитывать, что сам по себе этот параметр не связан напрямую с возможностями CPU: на фактическую мощность чипа влияет множество других его особенностей, и нередко бюджетное решение с высокой тактовой частотой оказывается менее производительным, чем дорогой и при этом, казалось бы, более «медленный» процессор. Кроме того, общая производительность системы напрямую зависит от целого набора других факторов — прежде всего объема оперативной памяти. Поэтому при оценке смартфона стоит ориентироваться не столько на частоту процессора, сколько на общие характеристики системы и наглядные показатели вроде результатов в тестах (см. ниже).
Графический процессор
Модель графического процессора, используемого в мобильном телефоне.
Этот модуль отвечает за все задачи, связанные с графикой; соответственно, его характеристики напрямую влияют на эффективность обработки той или иной картинки. Особенно это заметно на примере «тяжелого» контента, такого как современные 3D-игры. Поэтому наличие мощного видеоадаптера особенно важно для
игровых смартфонов. А зная модель графического процессора, можно найти подробные данные о нем и оценить его возможности.
Оперативная память
Параметр определяет общее быстродействие смартфона: чем больше объем ОЗУ — тем быстрее работает устройство и тем лучше оно справляется с обилием задач и/или ресурсоемкими приложениями (при прочих равных). Это еще более верно в свете того, что большие объемы «оперативки» обычно сочетаются с мощными продвинутыми процессорами. Однако напрямую сравнивать между собой можно только аппараты с идентичными операционными системами, а в случае Android — с одинаковыми версиями и редакциями этой ОС (подробнее обо всем этом см. «Операционная система»). Связано это с тем, что разные ОС и даже разные версии одной ОС могут заметно различаться по требованиям к объему RAM. К примеру, iOS, благодаря неплохой оптимизации под конкретные устройства, способна эффективно работать с
3 ГБ оперативной памяти. Для современных версий Android в обычной редакции (не Go Edition) упомянутые 3 ГБ фактически являются необходимым минимумом. Под такую ОС лучше иметь хотя бы
4 ГБ или
6 ГБ RAM. В высококлассных аппаратах с мощной электронной «начинкой» можно встретить и более впечатляющие цифры —
8 ГБ или даже
12 ГБ и более.
Спецификация памяти
От спецификации зависит в первую очередь скорость работы памяти, и, соответственно, быстродействие аппарата в целом (особенно при работе с большими объемами данных или ресурсоемкими приложениями). В наше время встречается две базовых спецификации — eMMC (embedded Multimedia Memory Card) и UFS (Universal Flash Storage); каждая из них имеет несколько версий. В целом наиболее быстрыми и продвинутыми на сегодня являются накопители с
UFS 3.1,
UFS 4.0 и
UFS 4.1, однако они и стоят соответственно, а потому применяются в основном в смартфонах премиум-класса. А более детальное описание этих стандартов выглядит так:
— eMMC. Один из наиболее простых и доступных стандартов твердотельной памяти — к примеру, именно эту спецификацию использует большинство флешек. В смартфонах и других портативных гаджетах этот стандарт был общепринятым до 2016 года, когда началось внедрение UFS; однако и сейчас он встречается нередко — в основном благодаря невысокой стоимости и низкому энергопотреблению. Скорости у eMMC заметно ниже, чем у UFS. Так, в актуальной версии eMMC 5.1A (2019 год) скорость чтения составляет до 400 МБ/с, а более ранняя и распространенная версия eMMC 5.1 предусматривает до 250 МБ/с в режиме чтения, до 125 МБ/с в режиме последовательной записи и всего лишь до 7.16 МБ/с при случайной записи (проще говоря, в режиме работы с приложениями).
—
UFS. Стандарт твердотельных накопителей, созданный как более быстрый и совершенный наследник eMMC. Помимо увеличенных скоростей обмена данными, в UFS был изменен еще и формат работы — он полностью дуплексный, то есть чтение и запись могут осуществляться одновременно (тогда как в eMMC эти процессы выполнялись по очереди). Также была значительно повышена эффективность в режиме случайного чтения и записи, что положительно сказалось на качестве работы с приложениями. Конкретные же скорости обмена данными и особенности работы зависят от версии UFS, в наше время на рынке можно встретить такие варианты:
- 2.0. Наиболее ранняя из версий, встречающихся в современных смартфонах; была выпущена еще в 2013 году. Обеспечивает скорость передачи данных до 600 МБ/с на одну линию и до 1,2 ГБ/с на две линии, максимально доступные в этой версии. Те же показатели имеет более новая версия 2.1, однако она дополнена рядом важных нововведений. Поэтому память UFS 2.0 в мобильных телефонах используется очень редко.
- 2.1. Первая из версий, получивших широкое распространение в смартфонах; была выпущена в 2016 году. По показателям скорости не отличается от описанной выше версии 2.0, а основные отличия заключаются в некоторых усовершенствованиях. В частности, в UFS 2.1 были внедрены индикатор состояния («здоровья») накопителя, возможность удаленного обновления прошивки, а также ряд решений, направленных на повышение общей надежности.
- 2.2. Развитие стандарта UFS 2.x, представленное летом 2020 года. Ключевым улучшением является внедрение функции WriteBooster (изначально появившейся в UFS 3.1); эта функция позволяет значительно увеличить скорость записи и, соответственно, общую производительность в задачах вроде запуска приложений.
- 3.0. Версия, выпущенная в 2018 и реализованная «в железе» годом позже. Пропускная способность была увеличена до 2,9 ГБ/с на две линии (1,45 ГБ/с на одну), были внедрены новые версии электронного протокола M-PHY (физический уровень) и основанного на нем UniPro, повышена надежность работы с данными и расширен температурный режим работы контроллеров (в теории он может составлять от -40 °С до 105 °С).
- 3.1. Наследник стандарта UFS 3.0, официально представленный в начале 2020 года. Позиционируется как спецификация, созданная специально для мобильных устройств высокой производительности и направленная на увеличение скорости работы при максимальном снижении энергопотребления. Для этого в UFS 3.1 реализован ряд нововведений: энергонезависимый кэш Write Booster для ускорения записи; специальный режим энергосбережения DeepSleep для относительно простых и недорогих систем; а также функция Performance Throttling Notification, позволяющая накопителю подавать на управляющую систему сигналы о перегреве. Кроме того, в данном стандарте может дополнительно предусматриваться поддержка расширения HPB, повышающего скорость чтения.
- 4.0. В версии UFS 4.0 вдвое увеличили пропускную способность на полосу (23.2 Гбит/с на линию) и примерно на 46 % улучшили показатели энергоэффективности (сравнительно с предшествующей спецификацией 3.1). Модули памяти стандарта UFS 4.0 обеспечивают максимальную скорость чтения до 4200 МБ/с, записи — до 2800 МБ/с. Высокая пропускная способность делает стандарт памяти идеально подходящим для 5G-смартфонов.
- 4.1. Эту версию выпустили в 2024 году и тут же реализовали «в железе» (еще до появления официальных спецификаций). В памяти данной ревизии на порядок выросла скорость установки приложений (практически вдвое по сравнению с UFS 4.0), а скорость копирования файлов удалось нарастить на добрую треть. Ревизия 4.1 разработана с упором на развитую функциональность искусственного интеллекта в мобильных устройствах.