Каталог   /   Компьютерная техника   /   Приставки и аксессуары   /   VR очки

Сравнение HTC Vive Focus Plus vs HTC Vive Focus

Добавить в сравнение
HTC Vive Focus Plus
HTC Vive Focus
HTC Vive Focus PlusHTC Vive Focus
Товар устарел
от 339 575 тг.
Товар устарел
Тип устройстваVR-очкиVR-очки
Назначение (совместимость)
автономное устройство
Windows
автономное устройство
Характеристики
Разрешение дисплея2880x1600 пикс2880x1600 пикс
Угол обзора110 °110 °
Встроенная память32 ГБ
Оперативная память4 ГБ
ПроцессорQualcomm Snapdragon 835Qualcomm Snapdragon 835
Частота обновления75 к/с75 к/с
Отслеживание движений 6DoF
Акселерометр
Гироскоп
Настройка расстояния линз
Настройка межзрачкового расстояния
Мультимедиа
Картридер
USB C++
Bluetooth+
Wi-FiWi-Fi 5 (802.11ac)Wi-Fi 5 (802.11ac)
Микрофон
Наушники
Выход на наушники
Общее
Контроллер
Трек камера
Время работы3 ч3 ч
Материал корпусапластикпластик
Габариты (ВхШхГ)240x200x115 мм240x200x115 мм
Вес695 г435 г
Дата добавления на E-Katalogноябрь 2019ноябрь 2019
Что лучше, HTC Vive Focus Plus или Vive Focus?

HTC Vive Focus Plus часто сравнивают
HTC Vive Focus часто сравнивают
Глоссарий

Назначение (совместимость)

Источник сигнала в VR-очках показывает, откуда именно приходит картинка и кто выполняет основную «тяжёлую» обработку графики. В одном случае изображение формирует мощный ПК или консоль, в другом — мобильный телефон, а для FPV-очков сигнал идёт вообще напрямую с дрона по радиоканалу. Особняком стоит выделить и автономные устройства, не требующие подключения внешних гаджетов. От выбранного источника сигнала зависят качество картинки, задержка, набор доступных игр и приложений, а также то, как вообще подключаются VR-очки — кабелем, по Wi-Fi, Bluetooth или через специализированный передатчик.

Автономное устройство. VR-очки, в которых сам шлем выступает источником сигнала: внутри стоит мобильный процессор, видеочип, память и своя операционная система, поэтому картинка рождается прямо в гарнитуре, а не на компьютере или телефоне. Пользователь надевает шлем, подключается к Wi-Fi, запускает игры и приложения из встроенного магазина — без проводов, без ПК и без обязательного смартфона под рукой. По мощности такие решения ближе к хорошему Android-смартфону и уступают связке с Windows-ПК, зато заметно удобнее мобильных шлемов, где всё завязано на телефон: не нужно вставлять аппарат в корпус, следить за нагревом и зарядом сразу двух устройств. Автономные VR-очки особенно уместны для повседневных игр, фитнеса и обучения, когда важнее свобода передвижения и простота запуска, а не максимальные графические настройки.

Android. VR-очки завязаны на мобильной платформе Google и работают либо в паре со смартфоном, либо сами по себе как автономное устройство на Android. В первом случае телефон вставляется в корпус шлема или соединяется с ним по беспроводной связи, формируя картинку и передавая её на экраны внутри очков, во втором — сам шлем содержит встроенный чипсет, память и магазин приложений, а телефон используется только для настройки и стриминга. Такой источник сигнала делает VR мобильным: достаточно смартфона и гарнитуры, чтобы запускать простые игры, 360-видео и образовательные приложения без мощного ПК, но по части графики такие решения уступают полноценным ПК- и консольным системам.

iOS (iPhone). Похож по идее на Android, но завязан на экосистему Apple и смартфоны iPhone. VR-очки в этом случае получают изображение либо от самого телефона, установленного в корпус шлема, либо через специальный режим стриминга/зеркалирования с iPhone по Wi-Fi или кабелю Lightning/USB-C. Поддержка iOS означает, что пользователь может использовать большое число приложений, 360-роликов и образовательного контента из App Store, при этом система обычно проще и надёжнее в настройке, но выбор именно «настоящих» VR-игр меньше, чем в мире Android или Windows.

Windows. VR-очки работают в связке с ПК под управлением Windows, который полностью отвечает за вывод 3D-графики. Обычно гарнитура подключается по USB-C / DisplayPort или по Wi-Fi в режиме стриминга, а сам шлем выступает как «дисплей с датчиками». Такой источник сигнала даёт наиболее продвинутый VR-гейминг: поддерживаются крупные игровые площадки, симуляторы, моды, а качество и стабильность зависят от видеокарты и процессора компьютера.

MacOS. VR-очки могут получать картинку с компьютеров Apple — iMac, MacBook и других моделей с macOS. Здесь VR чаще используется не для хардкорных игр, а для демонстраций, дизайна, 3D-просмотра и профессиональных приложений, поэтому важнее стабильная интеграция и корректная работа драйверов, чем максимальная производительность. Подключение обычно реализовано через USB-C / Thunderbolt и специализированное ПО, а выбор нативного VR-контента для MacOS заметно скромнее, чем для Windows.

PlayStation. VR-очки рассчитаны на работу с приставками PS4 или PS5, которые и рендерят всю графику. Здесь используется фирменное подключение по HDMI/USB и собственные протоколы Sony, а сам шлем оптимизирован именно под консольную экосистему. Такой вариант даёт предсказуемый опыт: игры из раздела PS VR тщательно адаптированы под конкретную модель очков, задержка минимальна, а пользователю не нужно думать о драйверах или конфигурации железа.

Xbox. Источник сигнала xBox подразумевает совместимость с приставкой в режиме вывода изображения или через промежуточный ПК. В классическом понимании полноценной VR-поддержки у Xbox нет, и потому гарнитура чаще используется как внешний дисплей, а не как комплексное VR-решение с трекингом в пространствах игр. Если производитель всё же заявляет xBox как источник сигнала, стоит внимательно изучить описание: чаще всего это специфичные сценарии вроде «кинозала» или потокового вывода, а не полноценные VR-проекты.

— Квадрокоптер (дрон). Отдельный класс VR-очков, где картинка приходит напрямую с камеры квадрокоптера в реальном времени по радиоканалу. Внутри таких очков установлен приёмник, работающий на конкретных частотах и протоколах, поэтому совместимость обычно жёстко привязана к определённой системе: гарнитура «понимает» только те видеопередатчики и модули, под которые она изначально рассчитана. Главная задача здесь — обеспечить минимальную задержку, чтобы пилот мог безопасно и точно управлять дроном «от первого лица», а не запускать обычные игры, и при выборе важно заранее проверить, будут ли очки корректно работать именно с вашим FPV-комплектом или потребуется замена камеры/передатчика под нужный стандарт.

Встроенная память

Объем встроенного накопителя, установленного в очках.

Таким накопителем оснащаются только самостоятельные устройства (см. «Назначение») — он используется для хранения программной прошивки, а также различного дополнительного контента (приложений, панорамных фильмов и т.п.). Чем больше объем накопителя — тем больше такого контента можно хранить на устройстве; с другой стороны, эта характеристика напрямую влияет на цену. Также стоит учитывать, что некоторые модели позволяют дополнить встроенное хранилище картой памяти (подробнее см. «Картридер»).

Для современных очков виртуальной реальности наиболее скромным объемом является 16 ГБ — устанавливать меньшие накопители технически нецелесообразно. В продвинутых моделях этот показатель может достигать 128 ГБ.

Оперативная память

Объем оперативной памяти (RAM), установленной в очках.

Данный параметр актуален только для самостоятельных устройств (см. «Назначение»). Теоретически чем больше оперативной памяти в гаджете — тем выше его мощность, тем быстрее он способен работать и тем лучше справляется с «тяжелыми» задачами. Однако на практике эта характеристика имеет больше справочное, нежели практическое значение. Во-первых, возможности автономных очков сильно зависят еще и от используемых процессора и видеоадаптера. Во-вторых, объем памяти подбирается таким образом, чтобы очки гарантированно могли справляться с задачами, для которых изначально предназначены. Собственно, проблемы могут возникнуть лишь с запуском очень требовательных приложений или ресурсоемкого видео (например, 4K-роликов панорамного формата); так что обращать внимание на объем RAM имеет смысл лишь в том случае, если вы планируете использовать очки для подобных целей.

Что касается конкретных объемов, то они в современных устройствах составляют от 2 до 4 ГБ.

Bluetooth

Наличие в очках модуля Bluetooth; также здесь может уточняться версия Bluetooth, которой соответствует этот модуль.

Bluetooth — технология, созданная для прямого беспроводного соединения между различными устройствами. Эта технология встречается во всех разновидностях VR-очков (см. «Назначение»), хотя большинство моделей с ее поддержкой относятся к самостоятельным устройствам. В любом случае наиболее популярный способ применения Bluetooth в очках виртуальной реальности — трансляция звука по беспроводному каналу. При этом формат такой трансляции может быть разным, в зависимости от специфики самих очков. Так, автономные устройства транслируют воспроизводимый звук на внешние наушники. В моделях для ПК и смартфонов могут предусматриваться встроенные наушники, и тут уже звук по Bluetooth передается на очки с внешнего устройства; в обратном направлении может передаваться звук со встроенного микрофона.

Помимо этого, возможны и другие способы применения Bluetooth — например, прямой обмен файлами с другим устройством или подключение игровых контроллеров. Подобные возможности встречаются исключительно в очках автономного типа, конкретный функционал для каждой модели стоит уточнять отдельно.

Что касается версий, то самой старой из применяемых в VR-очках на сегодня является Bluetooth 3.0, самой новой — Bluetooth 5.0. При этом различия между разными версиями для подобных устройств не принципиальны, эта информац...ия приводится в основном в справочных целях.

Микрофон

Наличие микрофона в конструкции VR-очков.

Такой функцией оснащаются преимущественно модели для ПК/консолей (см. «Назначение»). Встроенный микрофон используется в основном для голосового общения в онлайн-играх. При этом он нередко оказывается более удобен, чем настольный или встроенный в гарнитуру микрофон: очки могут мешать комфортному ношению гарнитуры, а настольное устройство неприменимо потому, что в VR-играх постоянно двигается как минимум голова пользователя (а то и все тело), и постоянно находиться на оптимальном расстоянии от микрофона невозможно.

Для дополнительного удобства собственный микрофон может делаться выдвижным или съемным.