Тёмная версия
Казахстан
Каталог   /   Компьютерная техника   /   Приставки и аксессуары   /   Очки виртуальной реальности

Сравнение HTC Vive Cosmos vs Microsoft HoloLens

Добавить в сравнение
HTC Vive Cosmos
Microsoft HoloLens
HTC Vive CosmosMicrosoft HoloLens
от 564 000 тг.
Товар устарел
от 1 976 400 тг.
Товар устарел
Отзывы
0
0
1
0
Главное
Для работы необходимо подключение к компьютеру либо смартфону. В конструкции устройства 4 камеры (2 фронтальные, 2 боковые). Благодаря наличию камер и контроллеров нет необходимости во внешних отслеживающих движения устройств.
Назначениедля ПК / игровой приставкисамостоятельное устройство
Характеристики
Разрешение дисплея2880x1700 пикс
Угол обзора110 °
Частота обновления90 к/с
Акселерометр
Гироскоп
Датчик приближения
Настройка расстояния линз
Настройка межзрачкового расстояния
Мультимедиа
USB A
DisplayPortv1.2
Наушники
Общее
Контроллер
Трек камера
Материал корпусапластикпластик
Вес579 г
Дата добавления на E-Katalogянварь 2019февраль 2017
Сравнение цен

Назначение

Общее назначение очков указывается на основе того, с каким устройством они должны использоваться:

Для ПК/консоли. Очки, подключаемые при работе к внешнему устройству и получающие видеосигнал с этого устройства. Чаще всего предполагается подключение к компьютеру или игровой приставке, однако встречаются модели с возможностью подсоединения к мобильным гаджетам, к дронам и т. п. В целом обеспечивают неплохой компромисс между доступностью и функционалом, к тому же на такие очки можно выводить довольно продвинутую графику. С другой стороны, для полноценного использования подобных моделей нередко требуются мощные видеокарты.

Для смартфона. Модели, предназначенные для превращения смартфона в устройство виртуальной реальности. Для этого смартфон устанавливается в специальное гнездо на очках таким образом, чтобы его экран был повернут к глазам пользователя; сами очки экранов не имеют. А эффект виртуальной реальности достигается за счет работы датчиков смартфона и (акселерометр, гироскоп) и использования специальных приложений, созданных специально для такого формата работы. Ключевое преимущество очков данного типа — простота и невысокая стоимость: чаще всего это чисто механические устройства, без встроенной электроники (и даже продвинутые модели с дополнительной «начинкой» стоят заметно дешевле других типов очков). С другой стороны, качество виртуальной реальности напрямую зависит от возмож...ностей смартфона, притом что не все аппараты корректно обрабатывают подобный контент. Кроме того, очки должны быть совместимы с используемым смартфоном, а это не всегда гарантируется (подробнее см. «Макс. диагональ телефона»).

Самостоятельное устройство. Очки, функционирующие полностью автономно и не требующие использования внешних устройств. Для этого в конструкции предусматривается собственный процессор, «оперативка», видеоадаптер, накопитель для хранения контента и аккумулятор для питания. Таким образом, с подобным гаджетом виртуальная реальность становится доступной буквально в любой точке земного шара; а по стоимости такие очки сравнимы с моделями для ПК/консолей. С другой стороны, возможности у автономных устройств заметно скромнее: относительно невысокая мощность видеоадаптеров не позволяет выдавать такую же продвинутую графику, как на ПК или консолях, объем встроенной памяти обычно невелик, а время непрерывной работы ограничивается зарядом аккумулятора.

Для квадрокоптера (FPV-очки). Видеоочки, используемые для управления дронами и моделями радиоуправляемых беспилотников (БПЛА) с целью предоставления вида «от первого лица». FPV-очки позволяют пилотам получать видеопоток с камеры БПЛА в режиме реального времени. Для этого в конструкции таких очков предусматривается два отдельных миниатюрных экрана на каждый глаз и сложная оптика для обеспечения бинокулярного зрения. Линзы нередко имеют регулировку фокусного расстояния для подстройки под зрительный аппарат и различные потребности пилота. Многие FPV-очки оборудованы встроенным приемником и антеннами для получения сигналов от видеокамеры на борту БПЛА, а также управления квадрокоптером. FPV-системы активно применяются в сегменте гоночных дронов, аэрофотосъемки и даже при ведении боевых действий. Очки с видом «от первого лица» предоставляют пилоту более полное восприятие окружающей обстановки и улучшают управляемость летательного аппарата.

Разрешение дисплея

Разрешение встроенных дисплеев в очках, имеющих такое оснащение — то есть моделях для ПК/консолей, а также автономных устройствах (см. «Назначение»).

Чем выше разрешение — тем более сглаженную и детализированную «картинку» выдают очки, при прочих равных. Благодаря развитию технологий в наше время не редкостью являются модели с экранами Full HD (1920x1080) и даже более высоких разрешений. С другой стороны, этот параметр заметно сказывается на стоимости очков. Кроме того, стоит помнить, что для полноценной работы с дисплеями высокого разрешения нужна мощная графика, способная воспроизводить соответствующий контент. В случае очков для ПК и приставок это выдвигает соответствующие требования к внешним устройствам, а в автономных моделях приходится использовать продвинутые встроенные видеоадаптеры (что еще больше влияет на стоимость).

Угол обзора

Угол обзора, обеспечиваемый очками виртуальной реальности — то есть угловой размер пространства, попадающего в поле зрения пользователя. Как правило, в характеристиках указывается размер этого пространства по горизонтали; впрочем, если необходима максимально точная информация, этот момент не помешает уточнить отдельно.

Чем шире угол обзора — тем больше игрового пространства пользователь может видеть, не поворачивая головы, тем мощнее эффект погружения и тем меньше вероятности, что изображение будет подвержено эффекту «туннельного зрения». С другой стороны, делать поле зрения слишком обширным тоже не имеет смысла с учетом особенностей человеческого глаза. В целом большим углом обзора считается угол, составляющий 100° и более. С другой стороны, встречаются модели, где этот показатель составляет 30° и даже меньше — это, как правило, специфические устройства (например, очки для пилотирования дронов и очки дополненной реальности), где подобные характеристики вполне оправданы с учетом общего функционала.

Частота обновления

Частота обновления, поддерживаемая встроенными экранами очков, проще говоря — максимальная частота кадров, которую способны выдавать экраны.

Напомним, экраны предусматриваются в моделях для ПК/консолей и в автономных устройствах (см. «Назначение»). А от данного показателя напрямую зависит качество картинки: при прочих равных более высокая частота кадров обеспечивает более плавное изображение, без рывков и с хорошей детализацией в динамичных сценах. Обратная сторона этих преимуществ — увеличение цены.

Также стоит учитывать, что в некоторых случаях фактическая частота кадров будет ограничиваться не возможностями очков, а характеристиками внешнего устройства или свойствами проигрываемого контента. Например, относительно слабая видеокарта ПК может «не вытянуть» сигнал с высокой частотой кадров, или определенная частота может быть задана в игре и не предусматривать возможности повышения. Поэтому не стоит гнаться за большими значениями и достаточно будет очков частотой 90 к/с.

Датчик приближения

Наличие в очках датчика, реагирующего на приближение к лицу пользователя.

Подобный датчик используется для автоматического переключения между рабочим режимом и режимом ожидания: к примеру, когда пользователь снимает очки, датчик отключает встроенные экраны (или телефон, если он подключается к очкам через разъём), экономя заряд батареи и ресурс оборудования, а при надевании — включает очки на полный функционал.

Настройка расстояния линз

Возможность двигать линзы очков вперед и назад, меняя таким образом их расположение относительно экрана и глаз пользователя. Конкретный смысл этой функции может быть разным: она может настраивать угол зрения (дабы экран полностью помещался в поле зрения и в то же время не был слишком мелким), играть роль диоптрической коррекции (что важно для пользователей, носящих очки) или фокусировки, заменять настройку межзрачкового расстояния (см. ниже) и т.п. Эти нюансы стоит уточнять отдельно. Однако в любом случае данная функция не будет лишней — она облегчает подстройку очков под личные особенности пользователя.

Настройка межзрачкового расстояния

Возможность настраивать межзрачковое расстояние очков — то есть расстояние между центрами двух линз. Для этого линзы устанавливаются на подвижных креплениях, позволяющих смещать их вправо/влево. Смысл данной функции заключается в том, что для нормального просмотра центры линз должны находиться напротив зрачков пользователя — а у разных людей расстояние между зрачками тоже разное. Соответственно, эта настройка будет полезна в любом случае, однако особенно она важна для пользователей крупного или миниатюрного телосложения, у которых межзрачковое расстояние заметно отличается от среднего показателя.

В то же время существует довольно значительное количество очков, не имеющих данной функции. Их можно разделить на три категории. Первая — устройства, где отсутствие настройки под межзрачковое расстояние компенсируется тем или иным способом (например, особой формой линз, не требующей подстройки). Вторая — модели, где данная регулировка не нужна в принципе (в частности, некоторые очки дополненной реальности). И третья — наиболее простые и дешевые решения, где от дополнительных регулировок отказались для снижения стоимости.

USB A

Наличие в очках хотя бы одного разъема USB A. Это полноразмерный разъем USB, такого же типа, как стандартные USB-порты в компьютерах и ноутбуках. А вот его функции могут быть разными, в зависимости от функционала очков (см. «Назначение»). Так, в моделях для ПК и консолей USB — это один из разъемов подключения, используемый в связке с видеоинтерфейсом типа HDMI или DisplayPort: по видеоразъему передается изображение, а через USB-соединение — данные с датчиков на очках, необходимые для изменения картинки и создания «эффекта погружения». А в самостоятельных устройствах USB A используется для подключения различных дополнительных аксессуаров — например, флешек с приложениями или другим контентом. Также возможно применение этого разъема для зарядки аккумулятора, хотя такой способ использования в целом для него не характерен.

DisplayPort

Наличие в очках входа DisplayPort; также здесь может уточняться версия этого интерфейса.

DisplayPort является одним из самых популярных в наше время цифровых видеоинтерфейсов высокого разрешения (впрочем, возможна и передача звука). Он особенно распространен в компьютерной технике, а в ПК и ноутбуках Apple фактически является стандартом. Входом этого типа оснащаются только очки для компьютеров и приставок (см. «Назначение») — он используется для приема видеосигнала (и аудиосигнала, при необходимости) с внешнего устройства. Что касается версий DisplayPort, то здесь варианты могут быть такими:

— v.1.2. Самая ранняя (2010 год) из актуальных на сегодня, но в то же время более чем функциональная версия. Полноценно поддерживает видео в качестве до 5K (30 к/с), а с определенными ограничениями — до 8K.
— v.1.3. Обновление, выпущенное в 2014 году. Представило возможность полноценной работы с 8K-разрешениями на 30 к/с, а с 4K и 5K — на 120 и 60 к/с соответственно.
— v.1.4. Обновление 2016 года, в котором пропускная способность была еще более увеличена — вплоть до поддержки 5K видео на 240 к/с и 8K — на 120 к/с. Кроме того, появилась совместимость с технологией HDR 10, улучшающей цветопередачу и общее качество картинки.
HTC Vive Cosmos часто сравнивают
Microsoft HoloLens часто сравнивают