Каталог   /   Компьютерная техника   /   Приставки и аксессуары   /   VR очки

Сравнение Sony PlayStation VR + Game vs Sony HMZ-T3

Добавить в сравнение
Sony PlayStation VR + Game
Sony HMZ-T3
Sony PlayStation VR + GameSony HMZ-T3
от 141 347 тг.
Товар устарел
Товар устарел
OLED-дисплей высокой четкости. Комфортная посадка. Удобство использования в очках. Встроенная гарнитура. Комплект VR Worlds из пяти разноплановых игр.
Игра в комплекте. Проводное подключение.
Тип устройстваVR-очки3D видео-очки
Назначениедля ПК / игровой приставкидля ПК / игровой приставки
Характеристики
Разрешение дисплея1920x1080 пикс1280x720 пикс
Угол обзора100 °45 °
Частота обновления120 к/с
Акселерометр
Гироскоп
Отслеживание движений 6DoF
Настройка расстояния линз
Настройка межзрачкового расстояния
Мультимедиа
USB A
HDMI+
Микрофон
Наушники
Выход на наушники
Общее
Управлениекнопочноекнопочное
Материал корпусапластикпластик
Габариты (ВхШхГ)187x185x277 мм148x189x270 мм
Вес610 г320 г
Дата добавления на E-Katalogмарт 2018февраль 2017
Что лучше, Sony PlayStation VR + Game или HMZ-T3?

Sony PlayStation VR + Game часто сравнивают
Глоссарий

Тип устройства

VR-очки. Шлемы или гарнитуры, которые показывают картинку прямо перед глазами и блокируют реальный мир, создавая ощущение, что вы находитесь внутри виртуального пространства. Через VR-очки вы видите не комнату вокруг, а цифровой мир: игры, симуляторы, виртуальные кинотеатры. В отличие от AR-очков, VR-очки полностью перекрывают реальный обзор и создают эффект присутствия «внутри» сцены, поэтому важны удобная посадка, хорошее разрешение и частота обновления, чтобы снизить укачивание и усталость глаз. Такие устройства используют геймеры, любители автосимов, авиасимуляторов, а также их применяют в обучении и 3D-презентациях техники или недвижимости.

AR-очки. Умные очки, которые накладывают цифровую информацию поверх реального мира: в поле зрения появляются подсказки, стрелки навигации, уведомления, 3D-модели. В отличие от VR-очков, AR-очки не перекрывают полностью окружающую среду, а дополняют её, поэтому они удобны в повседневной жизни, логистике, сервисе и обучении. Через AR-очки мастер может видеть подсказки по ремонту оборудования, а пользователь — схему прохода в ТЦ или перевод надписи. Важны лёгкий корпус, хорошая яркость изображения и точное отслеживание положения в пространстве.

MR-очки. Устройства смешанной реальности, которые совмещают элементы VR и AR и позволяют виртуальным объектам «жить» в реальном пространстве, учитывать пол, стены, м...ебель. В MR-очках 3D-модель может стоять на настоящем столе, а пользователь обходит её, смотрит с разных углов и взаимодействует жестами или контроллерами. В отличие от простых AR-очков, MR-очки используют более продвинутые датчики и камеры для сканирования помещения, поэтому подходят для инженерии, дизайна интерьеров, медицины, обучения персонала. Это уже не только «подсказка на стекле», а полноформатная работа с цифровыми объектами в реальной комнате.

FPV-очки. Специализированные очки для полётов от первого лица, которые показывают изображение с камеры дрона или другого радиоуправляемого устройства в режиме реального времени. В отличие от VR-очков, FPV-очки почти всегда «заточены» под одну задачу — дать пилоту максимально прямую и минимально задержанную картинку, чтобы точно управлять квадрокоптером, особенно в гонках или фристайле. Здесь важны низкая задержка сигнала, удобная посадка, совместимость с передатчиком и поддержка нужного формата видео.

3D видео-очки. Компактные очки или мини-шлемы, которые создают эффект объёмного изображения и большого экрана перед глазами, но без типичного «геймерского» функционала VR. Они могут подключаться к ноутбуку, медиаплееру, консоли и отображать фильмы, сериалы, 3D-контент или обычное видео, делая просмотр более приватным. В отличие от FPV-очков, которые показывают живую картинку с дрона, 3D видео-очки оптимизированы именно под медиаконтент: важны качество матрицы, контрастность, комфорт для длительного ношения. Их выбирают киноманы, часто путешествующие пользователи и те, кто не хочет занимать место под большой телевизор.

Разрешение дисплея

Разрешение встроенных дисплеев в очках, имеющих такое оснащение — то есть моделях для ПК/консолей, а также автономных устройствах (см. «Назначение»).

Чем выше разрешение — тем более сглаженную и детализированную «картинку» выдают очки, при прочих равных. Благодаря развитию технологий в наше время не редкостью являются модели с экранами Full HD (1920x1080) и даже более высоких разрешений. С другой стороны, этот параметр заметно сказывается на стоимости очков. Кроме того, стоит помнить, что для полноценной работы с дисплеями высокого разрешения нужна мощная графика, способная воспроизводить соответствующий контент. В случае очков для ПК и приставок это выдвигает соответствующие требования к внешним устройствам, а в автономных моделях приходится использовать продвинутые встроенные видеоадаптеры (что еще больше влияет на стоимость).

Угол обзора

Угол обзора, обеспечиваемый очками виртуальной реальности — то есть угловой размер пространства, попадающего в поле зрения пользователя. Как правило, в характеристиках указывается размер этого пространства по горизонтали; впрочем, если необходима максимально точная информация, этот момент не помешает уточнить отдельно.

Чем шире угол обзора — тем больше игрового пространства пользователь может видеть, не поворачивая головы, тем мощнее эффект погружения и тем меньше вероятности, что изображение будет подвержено эффекту «туннельного зрения». С другой стороны, делать поле зрения слишком обширным тоже не имеет смысла с учетом особенностей человеческого глаза. В целом большим углом обзора считается угол, составляющий 100° и более. С другой стороны, встречаются модели, где этот показатель составляет 30° и даже меньше — это, как правило, специфические устройства (например, очки для пилотирования дронов и очки дополненной реальности), где подобные характеристики вполне оправданы с учетом общего функционала.

Частота обновления

Частота обновления, поддерживаемая встроенными экранами очков, проще говоря — максимальная частота кадров, которую способны выдавать экраны.

Напомним, экраны предусматриваются в моделях для ПК/консолей и в автономных устройствах (см. «Назначение»). А от данного показателя напрямую зависит качество картинки: при прочих равных более высокая частота кадров обеспечивает более плавное изображение, без рывков и с хорошей детализацией в динамичных сценах. Обратная сторона этих преимуществ — увеличение цены.

Также стоит учитывать, что в некоторых случаях фактическая частота кадров будет ограничиваться не возможностями очков, а характеристиками внешнего устройства или свойствами проигрываемого контента. Например, относительно слабая видеокарта ПК может «не вытянуть» сигнал с высокой частотой кадров, или определенная частота может быть задана в игре и не предусматривать возможности повышения. Поэтому не стоит гнаться за большими значениями и достаточно будет очков частотой 90 к/с.

Акселерометр

Наличие в очках собственного встроенного акселерометра.

Акселерометр представляет собой датчик, фиксирующий ускорения, которым подвергается устройство. Он выполняет две основные функции: определяет положение очков относительно горизонта (по направлению силы тяжести) и отслеживает рывки и сотрясения (впрочем, эта функция в VR-очках второстепенна). Такой датчик необходим для полноценного «погружения» в виртуальную реальность, поэтому он обязательно предусматривается в очках, выполненных в виде самостоятельных устройств (см. «Назначение»). А вот модели для ПК/консолей могут и не оснащаться акселерометром — это означает, что очки предназначены не для классической VR, а для более специфических задач (например, управления дроном с видом от первого лица).

Что касается моделей для смартфонов, то они в большинстве своем не имеют данной функции, так как акселерометрами оснащаются все современные смартфоны. Однако встречаются и исключения — высококлассные модели, рассчитанные на конкретные аппараты: в них акселерометр может работать в связке с датчиком смартфона, что обеспечивает максимально точное позиционирование картинки.

Гироскоп

Наличие в очках собственного встроенного гироскопа.

Гироскоп фиксирует направление, скорость и угол поворота устройства — как правило, по всем трем осям. Без такого датчика невозможно добиться полноценного «погружения» в виртуальную реальность, поэтому он имеется во всех автономных очках, а также в большинстве моделей для ПК/консолей (см. «Назначение»). Во втором случае исключение составляют лишь отдельные модели со специфическим назначением — «личные кинотеатры», очки для пилотирования дронов и т. п. В свою очередь, очкам для смартфонов изначально гироскопы не требуются, так как подобные датчики есть в самих смартфонах. Однако и тут бывают исключения — продвинутые модели, созданные под конкретные аппараты топового уровня: в них встроенный гироскоп работает совместно с гироскопом подключенного смартфона, обеспечивая максимальную точность позиционирования.

Настройка расстояния линз

Возможность двигать линзы очков вперед и назад, меняя таким образом их расположение относительно экрана и глаз пользователя. Конкретный смысл этой функции может быть разным: она может настраивать угол зрения (дабы экран полностью помещался в поле зрения и в то же время не был слишком мелким), играть роль диоптрической коррекции (что важно для пользователей, носящих очки) или фокусировки, заменять настройку межзрачкового расстояния (см. ниже) и т.п. Эти нюансы стоит уточнять отдельно. Однако в любом случае данная функция не будет лишней — она облегчает подстройку очков под личные особенности пользователя.

Настройка межзрачкового расстояния

Возможность настраивать межзрачковое расстояние очков — то есть расстояние между центрами двух линз. Для этого линзы устанавливаются на подвижных креплениях, позволяющих смещать их вправо/влево. Смысл данной функции заключается в том, что для нормального просмотра центры линз должны находиться напротив зрачков пользователя — а у разных людей расстояние между зрачками тоже разное. Соответственно, эта настройка будет полезна в любом случае, однако особенно она важна для пользователей крупного или миниатюрного телосложения, у которых межзрачковое расстояние заметно отличается от среднего показателя.

В то же время существует довольно значительное количество очков, не имеющих данной функции. Их можно разделить на три категории. Первая — устройства, где отсутствие настройки под межзрачковое расстояние компенсируется тем или иным способом (например, особой формой линз, не требующей подстройки). Вторая — модели, где данная регулировка не нужна в принципе (в частности, некоторые очки дополненной реальности). И третья — наиболее простые и дешевые решения, где от дополнительных регулировок отказались для снижения стоимости.

USB A

Наличие в очках хотя бы одного разъема USB A. Это полноразмерный разъем USB, такого же типа, как стандартные USB-порты в компьютерах и ноутбуках. А вот его функции могут быть разными, в зависимости от функционала очков (см. «Назначение»). Так, в моделях для ПК и консолей USB — это один из разъемов подключения, используемый в связке с видеоинтерфейсом типа HDMI или DisplayPort: по видеоразъему передается изображение, а через USB-соединение — данные с датчиков на очках, необходимые для изменения картинки и создания «эффекта погружения». А в самостоятельных устройствах USB A используется для подключения различных дополнительных аксессуаров — например, флешек с приложениями или другим контентом. Также возможно применение этого разъема для зарядки аккумулятора, хотя такой способ использования в целом для него не характерен.