Тёмная версия
Казахстан
Каталог   /   Компьютерная техника   /   Сетевое оборудование   /   Антенны для роутеров

Сравнение MikroTik mANT LTE 5o vs Cisco 3G-ANTM1919D

Добавить в сравнение
MikroTik mANT LTE 5o
Cisco 3G-ANTM1919D
MikroTik mANT LTE 5oCisco 3G-ANTM1919D
от 10 111 тг.
Товар устарел
от 15 270 тг.
Товар устарел
Назначение4G (LTE)3G
Установкавнешняявнутренняя
MIMO
Диаграмма направленностивсенаправленнаявсенаправленная
Поляризациявертикальная и горизонтальнаявертикальная
HPBW / гор.360 º
Частотный диапазон
 
 
 
 
LTE 800
LTE 1800
LTE 2600
CDMA 800
GSM 900
GSM 1800
UMTS 2100
 
 
 
Волновое сопротивление50 Ом50 Ом
Максимальная мощность25 Вт
Коэффициент усиления5 dBi
КоннекторSMA 2 штRP-TNC
Габариты129x129x34 мм160х23х16 мм
Дата добавления на E-Katalogиюнь 2019ноябрь 2016

Назначение

Тип связи, для которой предназначена антенна.

Wi-Fi. Технология, известная прежде всего по беспроводным компьютерным сетям. Дальность действия современного Wi-Fi оборудования может исчисляться сотнями метров; тем не менее, на практике редко приходится иметь дело с подобными расстояниями, и такая связь всё равно является связью с относительно небольшим радиусом действия. Wi-Fi антенны могут применяться не только для обеспечения уверенного приёма/передачи сигнала, но и для оптимизации зоны покрытия — например, чтобы распределить по помещению сигнал со стоящего в углу роутера (который иначе «светил» бы и за стену, тратя на это часть мощности).

3G. Мобильная связь третьего поколения; это первое поколение, представившее комфортную скорость доступа к Интернету (сравнимую со скоростью наземных линий). При этом под термином «3G» могут подразумеваться две разные технологии — UMTS и CDMA. Подробнее о них см. «Частотный диапазон».

4G (LTE). Мобильная связь четвёртого поколения. Формально к этому поколению относятся несколько технологий, однако самой популярной является именно LTE, и именно её обычно подразумевают, говоря о 4G. Не в последнюю очередь это обусловлено тем, что сеть LTE может выполняться в виде надстройки как над GSM/UMTS, так и над CDMA-сетями. Максимальная скорость обмена данными в таких сетях заявлена на уровне 299,6 Мбит/с на п...риём и 75,4 Мбит/с на передачу; на практике скорость зависит от особенностей оборудования и расстояния до базовой станции. Отметим, что стандарт LTE имеет две разновидности, несовместимые между собой — FDD (с разделением по частотам) и TDD (с разделением по времени); впрочем, под каждую их выделена своя часть таблицы диапазонов, и потребителю не нужно уточнять, какая именно разновидность поддерживается его устройством — достаточно убедиться в совпадении по диапазонам.

5G. Следующая, после 4G, редакция стандартов мобильной связи. В спецификациях поколения 5G заявлена пиковая скорость 20 Гбит/с на прием и 10 Гбит/с на отправку данных. Гарантированно пользователь может рассчитывать на скоростные показатели обмена информацией в 100 Мбит/с на закачку и 50 Мбит/с на передачу. Также в сетях 5G внедрен ряд комплексных решений, нацеленных на повышение надежности и общего качества связи. В частности, это многоэлементные антенные решетки (Massive MIMO) и технологии формирования направленного луча (Beamforming) на базовых станциях. Стандарт позволяет снизить энергопотребление в сравнении с предшественниками.

Отдельно стоит коснуться слухов о вреде 5G-связи для здоровья. Согласно современным научным данным, такая связь не представляет опасности для организма человека, а упомянутые слухи представляют собой конспирологические теории, не подтверждаемые никакими весомыми аргументами.

Отметим, что, помимо специализированных, существуют и «многоцелевые» антенны, допускающие возможность работы с двумя описанными выше стандартами, или даже со всеми сразу.

Установка

Способ установки, на который штатно рассчитана антенна.

Внешняя. Модели, созданные в расчёте на работу вне помещений. Главным отличием таких антенн от внутренних является повышенная степень защиты, позволяющая спокойно переносить осадки, перепады температур, пыль и другие «неприятности», связанные с работой на открытом воздухе. Ещё одна особенность заключается в том, что наружная антенна может быть довольно крупной, что, в свою очередь, положительно сказывается на характеристиках. Именно данный способ установки используют наиболее мощные и «дальнобойные» модели (хотя ими, разумеется, дело не ограничивается). Теоретически внешнюю антенну можно установить и в помещении, однако на практике это редко бывает оправдано: во-первых, из-за упомянутой громоздкости, а во-вторых из-за особенностей сигнала, обусловленных наличием стен.

Внутренняя. Модели, предназначенные для работы в помещении. Отличаются от внешних меньшими размерами, а также отсутствием специальной защиты от непогоды (из-за чего использовать такую антенну на улице, как минимум, крайне нежелательно). Характеристики внутренних антенн также в целом скромнее; тем не менее, для применения по основному назначению их вполне достаточно. Также отметим, что подобные устройства имеют более изящный дизайн — дабы вписываться в интерьер помещения.

MIMO

Совместимость антенны для Wi-Fi (см. «Назначение») с технологией MIMO.

Само название MIMO расшифровывается как «много входов, много выходов». Это довольно точно описывает общую суть данной технологии: она позволяет разделить передаваемые данные на несколько потоков и принимать эти потоки несколькими отдельными приёмниками. Благодаря этому в своё время удалось создать стандарт Wi-Fi 802.11 bgn со скоростью передачи данных до 300 Мбит/с; более современный стандарт 802.11ac (до 6,77 Гбит/с) также использует MIMO. Вообще данная функция становится всё более популярной не только в Wi-Fi оборудовании, но и в 3G/4G-устройствах (хотя изначально она была разработана именно для Wi-Fi).

Специфические требования к внешним MIMO-антеннам обусловлены тем, что при классическом соединении для каждого приёмопередатчика, по сути, требуется своя отдельная антенна. Таким образом, устройства с поддержкой данной технологии могут представлять собой две или больше антенн в одном корпусе (соответственно может быть 2 коннектора и более). Впрочем, встречаются и другие варианты исполнения, где за счёт использования специальных технологий MIMO реализуется иначе.

Поляризация

Тип поляризации, предусмотренный в антенне.

Говоря очень грубо и упрощённо, радиоканал можно сравнить с верёвкой, протянутой от передатчика к приёмнику, а радиоволны — с колебаниями этой верёвки. Современные антенны для Wi-Fi и 3G конструируются таким образом, что эти колебания происходят строго в одной плоскости — например, вверх и вниз. Такие волны называют поляризованными (точнее, линейно поляризованными — другие варианты в данном случае не актуальны). В приведённом примере поляризация — вертикальная, но есть также горизонтальная, когда колебания происходят из стороны в сторону.

Общее правило выбора Wi-Fi/3G антенны по данному параметру таково: поляризация должна совпадать с поляризацией той антенны (антенн), с которой планируется связываться. Иначе эффективность связи значительно упадёт — вплоть до полной невозможности работы. Впрочем, основным вариантом на сегодняшний день является вертикальная поляризация — она используется подавляющим большинством сотового и Wi-Fi оборудования. «Чисто горизонтальные» антенны практически не выпускаются, возможность работы в горизонтальной поляризации обычно предусматривается как опция; для этого антенну нужно повернуть на 90° вокруг горизонтальной оси относительно штатного положения. Теоретически такая возможность доступна для любой антенны, однако на практике поворачивать стоит только те модели, для которых такая возможность прямо заявлена — HPBW по ...>горизонтали и по вертикали (см. ниже) у них одинаковые, и поворот не влияет на форму охватываемого пространства.

Горизонтальная поляризация может пригодиться при загруженном эфире — она позволяет довольно эффективно отделить сигнал от прочего фона (который обычно поляризован вертикально). Однако такой формат работы используется редко, причём, как правило, для подключений типа «точка – точка», между двумя соответственно повёрнутыми антеннами.

Существует некоторое количество моделей, поддерживающих т.н. двойную поляризацию — когда сигнал передаётся сразу в двух вариантах поляризации. Однако необходимость в такой универсальности возникает крайне редко, а обходится она дорого. Поэтому подобных антенн выпускается сравнительно немного.

HPBW / гор.

Эффективный угол, охватываемый антенной в горизонтальной плоскости.

Любая антенна, не являющаяся всенаправленной, излучает сигнал в виде «луча», причём неравномерно: мощность наиболее высока в середине этого луча и ослабевает по мере смещения к краям. Границами HBPW являются две противоположные линии, на которых мощность сигнала ослаблена до половины от максимальной. Иными словами, HBPW — это сектор (в данном случае — по горизонтали), в пределах которого сигнал с антенны не будет ослабевать более чем наполовину и она будет сохранять приемлемую эффективность работы.

При прочих равных более широконаправленная антенна будет удобнее в наведении на цель, а также эффективнее в условиях сложного распространения сигнала (например, в плотной застройке, где он может поступать с различных направлений). Более узкая направленность, в свою очередь, положительно сказывается на коэффициенте усиления и, соответственно, «дальнобойности».

Частотный диапазон

Частотные диапазоны, на которые изначально рассчитана антенна. От этого параметра напрямую зависят технологии связи (см. «Назначение»), поддерживаемые изделием. В то же время каждый тип связи включает несколько диапазонов, обычно не совместимых между собой. Поэтому при выборе Wi-Fi или 3G антенны стоит учитывать не только общее назначение, но и диапазоны в пределах этого назначения. Вот наиболее популярные варианты:

2.4 ГГц. Наиболее популярный диапазон, используемый современным Wi-Fi оборудованием. Является штатным для стандарта Wi-Fi 802.11 b/g и одним из штатных в стандарте 802.11n. Поддерживается большинством антенн соответствующего назначения (см. выше).

5 ГГц. Диапазон Wi-Fi, впервые представленный в стандарте 802.11n (использовался параллельно с 2.4 ГГц) и являющийся единственным штатным для 802.11ac — наиболее продвинутого стандарта Wi-Fi на сегодняшний день. Отметим, что оборудование только на 5 ГГц может быть несовместимо с устаревшими устройствами, работающими в стандарте Wi-Fi 802.11 b/g; поэтому для гарантированной совместимости рекомендуется сочетать 5-гигагерцовую антенну с 2,4-гигагерцовой, или использовать универсальную модель, поддерживающую оба диапазона (выпускаются и такие).

— CDMA 450. В целом стандарт CDMA известен на постсоветском пространстве по услугам типа «городской номер на мобильном телефоне», а также как один из самых популярных способов «д...омашнего» подключения к Интернету через мобильные сети (используется технология EV-DO). В данном же случае речь идёт о CDMA-связи, использующей диапазон 450 МГц. Другой популярный диапазон — 800 МГц; принципиальной разницы между ними нет, поэтому оба варианта нередко используются операторами в пределах одной страны и даже региона. При этом CDMA450 и CDMA800 не совместимы между собой. В свете этого перед покупкой антенны стоит обязательно уточнить, какой именно стандарт использует выбранный мобильный оператор.

— CDMA 800. Стандарт CDMA-связи, использующий диапазон 800 МГц. Подробнее см. «CDMA450» выше.

— GSM 900. GSM — стандарт мобильной связи, некоторое время назад чрезвычайно популярный по всему миру. На сегодняшний день считается окончательно устаревшим (прежде всего из-за низкой пропускной способности), постепенно вытесняется более продвинутыми форматами 3G UMTS и 4G LTE. Однако оба этих формата являются надстройками над GSM, и такие сети сохраняют совместимость с оригинальным GSM-оборудованием. Кроме того, недорогие GSM-модули всё ещё используются в некоторых специальных устройствах, не требующих высокой скорости связи (системы сигнализации, платёжные терминалы и т.п.). В свете этого антенны для данного стандарта связи всё ещё продолжают выпускаться. Конкретно же GSM 900 (цифры обозначают рабочую частоту в МГц) является самым ранним диапазоном GSM-связи, появившимся в Европе и Азии. Уступает GSM 1800 по энергоэффективности и ёмкости сети, однако имеет большую дальность и лучше работает в условиях плотной городской застройки, благодаря чему применяется до сих пор. И даже в новых телефонах сохраняется совместимость с GSM 900.

— GSM 1800. Диапазон GSM, созданный как развитие и усовершенствование описанного выше GSM 900, с увеличенной вдвое рабочей частотой (до 1800 МГц — отсюда и название). За счёт этого удалось снизить мощность излучения вдвое, а также повысить ёмкость сети (количество аппаратов, которое может в ней работать одновременно). С другой стороны, GSM 1800 требует более плотного расположения базовых станций, а сигнал сильно теряет мощность при прохождении сквозь стены. Поэтому аппараты с поддержкой этого диапазона сделаны обратно совместимыми с GSM 900.

— UMTS 2100. Стандартный диапазон мобильной связи 3 поколения (3G) стандарта UMTS. Обычно именно эту связь имеют в виду, когда говорят о смартфоне или планшете с 3G. Такие сети были развёрнуты на основе существующей инфраструктуры GSM, однако из-за особенностей сигнала для работы в UMTS требуются специально предназначенные для этого диапазона антенны.

Помимо вышеописанных, в современных антеннах (прежде всего «мобильных») могут предусматриваться и другие диапазоны — например, LTE 800, 1800, 2600 и 5G 700 Мгц, 5G 3300 – 3800 МГц в моделях под соответствующий стандарт связи. Однако это встречается крайне редко и, как правило, в качестве дополнения к одному из более распространённых вариантов.

— LTE 800. Один из трёх наиболее популярных диапазонов, используемых мобильной связью 4 поколения LTE в Европе и на постсоветском пространстве (хотя и менее популярный, чем описанные ниже). Также известен как band 20, согласно официальной нумерации диапазонов. Относится к формату FDD (см. «Назначение — 4G (LTE)»).

— LTE 1800. Диапазон мобильной связи четвёртого поколения, известный также как band 3. Являлся наиболее популярным в мире на 2016 год, и велика вероятность, что эта ситуация сохранится довольно долго. Отчасти такая популярность обусловлена совпадением по частотам с GSM 1800 и простотой развёртывания сетей LTE в этом диапазоне.

— LTE 2600. Ещё один распространённый диапазон связи 4 поколения; второй по популярности, после LTE 1800, на 2016 год. По таблице диапазонов носит название band 7. Считается довольно перспективным благодаря очень небольшому количеству посторонних помех в своей полосе частот; многие операторы связи переходят или планируют переход на LTE 2600 даже несмотря на довольно высокую стоимость такого решения.

— 5G 700 МГц. Один из самых низких диапазонов для 5G-сетей на частоте 700 МГц обладает хорошей проникающей способностью в помещения и подходит для развертывания высокоскоростных мобильных сетей в сельской местности и вдоль транспортных магистралей. 5G на этой частоте обеспечивает широкое покрытие связью вне крупных городов с использованием меньшего числа базовых станций.

— 5G 3300 – 3800 МГц. Основной диапазон частот для развертывания мобильных сетей связи пятого поколения. Он обеспечивает стабильное покрытие в условиях плотной городской застройки и большого количества абонентов.

Максимальная мощность

Наибольшая мощность, которую имеет смысл подводить ко входу антенны. Теоретически этот параметр влияет на совместимость с передатчиком, однако обычному пользователю эта информация требуется очень редко. Так, даже в самых «деликатных» Wi-Fi антеннах малой дальности данное ограничение составляет 1 Вт, тогда как мощность потребительских роутеров во многих странах законодательно ограничена показателем всего в 100 мВт — для более мощного передатчика потребуется лицензия. Так что обращать внимание на максимальную входную мощность обычно приходится тем, кто работает со специализированным оборудованием — например, точками доступа WISP.

Коэффициент усиления

Коэффициент усиления сигнала, обеспечиваемый антенной.

В данном случае подразумевается коэффициент усиления относительно идеального изотропного излучателя — антенны, равномерно излучающей радиосигнал во все стороны в виде сферических волн. Такое усиление осуществляется за счёт сужения потока радиоволн, грубо говоря — увеличения их концентрации в пространстве (даже всенаправленные антенны излучают волны не в виде сферы, а в виде диска). При этом коэффициент измеряется по максимальной мощности, которая достигается в центре диаграммы направленности. Отметим также, что для обозначения данного параметра применяется децибел (точнее dBi, децибел относительно изотропа). Это нелинейная единица: так, разница в 3 дБ соответствует разнице приблизительно в 2 раза, 10 дБ — 10 раз, 20 дБ — 100 раз, и т.п. Существуют таблицы и калькуляторы, позволяющие переводить децибелы в разы.

Всё это значит, что коэффициент усиления является довольно специфическим параметром, и при выборе его оптимального значения может потребоваться консультация в специальных источниках или у профессионала-связиста. Впрочем, это актуально прежде всего для специфических ситуаций — например, установки 3G-антенны в частном доме за несколько километров от базовой станции. Общее же правило таково: повышение коэффициента усиления положительно сказывается на дальности связи, однако делает антенну более восприимчивой к помехам и, как правило, сказывается на её габаритах и весе.

Коннектор

Тип разъема, а также его количество, используемого для подключения антенны к роутеру, модему или другому оборудованию.

N-коннектор. Коаксиальный разъём характерной круглой формы, разработанный ещё в 1940 году известный прежде всего как стандартное гнездо для подключения антенн к телевизору. Впрочем, в Wi-Fi и 3G оборудовании используется разъём под волновое сопротивление 50 Ом — он имеет более тонкий центральный контакт, чем 75-омный «телевизионный», притом что в остальном оба разъёма идентичны. Это не является проблемой, если антенна подключается к внешнему сетевому оборудованию «родным» кабелем, однако при использовании сторонних проводов нужно соблюдать осторожность: при соединении разнотипных разъёмов возможно их повреждение, притом что сами разъёмы маркируются далеко не всегда. Впрочем, это не рекомендуется ещё и по электротехническим соображениям (см. «Волновое сопротивление»).

RP-TNC. Высокочастотный разъём, появившийся несколько позже описанного выше N-коннектора (в конце 1950-х). Схож с ним по размерам, также имеет коаксиальную конструкцию, но штатно делается именно под волновое сопротивление 50 Ом, что и обусловило его удобство для Wi-Fi и 3G оборудования. (Есть и 75-омные версии, но они встречаются редко и имеют явные отличия от стандартных).

RP-SMA. Дальнейшее развитие коаксиальных высокочастотных разъёмов, созданное в 196...0-х годах. Как и RP-TNC, штатно выпускается под номинальное сопротивление 50 Ом, однако более миниатюрен (меньше по диаметру почти в 3 раза), благодаря чему хорошо подходит для роутеров и модемов компактного размера. При этом несмотря на небольшие размеры, обеспечивает вполне надёжное и качественное соединение.

SMA. Коаксиальный высокочастотный разъём с миниатюрными размерами — его диаметр почти в три раза меньше, чем у коннекторов типа N или RP-TNC. По размерам и общей конструкции идентичен разъёму RP-SMA, однако имеет противоположную полярность и разное распределение контактов: в оригинальном SMA контакт «папа» (male) расположен на штекере, «мама» (female) — в гнезде, в RP-SMA — наоборот. По ряду причин RP-SMA оказался более предпочтительным для Wi-Fi и 3G-оборудования, а оригинальный SMA большого распространения не получил.

MMCX. Коаксиальный антенный разъём, имеющий небольшие размеры — внутренний диаметр гнезда составляет чуть больше 2,5 мм. Благодаря этому подобные разъёмы широко используются в различной портативной технике. MMCX конструируются под волновое сопротивление 50 Ом и частотный диапазон 0 – 6 ГГц.

— TNC. «Оригинальная версия» описанного выше RP-TNC; появилась первой, и уже позже на её основе был создан RP-TNC. По размерам и общей конструкции разъёмов оба интерфейса идентичны, однако они имеют противоположную полярность и разное распределение контактов: в TNC контакт «папа» (male) расположен на штекере, «мама» (female) — в гнезде, в RP-TCN — наоборот. По ряду причин RP-TNC оказался более предпочтительным для Wi-Fi и 3G оборудования, и оригинальный TNC особого распространения не получил.

FME. 50-омный коаксиальный интерфейс, схожий по размерам с RP-TNC, однако не идентичный. Поддерживает частоты до 2,4 ГГц, из-за чего встречается в основном в антеннах для мобильной связи и универсальных моделях.

CRC9. Миниатюрный коаксиальный интерфейс, встречающийся преимущественно в 3G/LTE-модемах и антеннах под них; впрочем, может устанавливаться и в универсальные антенны. Диаметр разъёма составляет всего лишь около 2 мм, что упрощает его использование в портативной технике. Кабель под CRC9 нередко имеет Г-образный штекер для повышения надёжности.

TS9. Коаксиальный интерфейс для подключения внешней антенны, используемый преимущественно в 3G/LTE-модемах. Визуально практически неотличим от разъёма CRC9, однако выделяется на его фоне большим диаметром (3.5 мм). Кабель под коннектор TS9 нередко имеет Г-образный штекер на кончике «хвоста».
MikroTik mANT LTE 5o часто сравнивают