Тёмная версия
Казахстан
Каталог   /   Инструмент и садовая техника   /   Измерительные приборы   /   Мультиметры

Сравнение Stanley FatMax FMHT82565-0 vs Stanley STHT0-77364

Добавить в сравнение
Stanley FatMax FMHT82565-0
Stanley STHT0-77364
Stanley FatMax FMHT82565-0Stanley STHT0-77364
от 15 150 тг.
Товар устарел
от 13 900 тг.
Ожидается в продаже
Устройствомультиметрмультиметр
Типцифровойцифровой
Виды измерений
Измерения
напряжение
ток
сопротивление
 
напряжение
ток
сопротивление
температура
Характеристики
Род токапостоянныйпостоянный
Род напряженияпостоянное / переменноепостоянное / переменное
Постоянное напряжение мин.200 мВ200 мВ
Постоянное напряжение макс.600 В300 В
Точность измерения (V⁻)0.5 %
Переменное напряжение мин.200 мВ
Переменное напряжение макс.600 В300 В
Постоянный ток мин.200000 мкА200 мкА
Постоянный ток макс.10 А10 А
Сопротивление мин.200 Ом200 Ом
Сопротивление макс.2 МОм2 МОм
Макс. индицируемое число19991999
Разрядность дисплея3 1/23 1/2
Функции и возможности
Функции
проверка диода
"прозвонка" цепи
проверка диода
"прозвонка" цепи
Комплектация
аккумулятор
измерительные щупы
аккумулятор
измерительные щупы
Общее
Источник питанияаккумулятораккумулятор
Тип аккумулятора2xAAA"Крона"
Дата добавления на E-Katalogфевраль 2020июль 2017

Измерения

Параметры, которые может измерять прибор.

Напряжение. Напряжение (разность потенциалов между двумя точками схемы), измеряемое в вольтах. Один из базовых электротехнических параметров, поддерживается всеми типами приборов, кроме осциллографов (см. «Устройство»). Для измерения используется параллельное подключение. В аналоговых приборах (см. «Тип») замер напряжения может осуществляться без питания.

Ток. Сила тока, протекающего по определённому участку цепи; измеряется в амперах. Существует два способа замера силы тока: традиционный и бесконтактный. Первый доступен практически во всех приборах с функцией амперметра, для этого необходимо разомкнуть цепь и включить устройство в разрыв последовательно (причём при аналоговом принципе работы амперметру не требуется питание). Второй метод используется в токоизмерительных клещах (см. «Устройство»).В большинстве случаев модели способны измерять постоянный и переменный ток.

Сопротивление. Сопротивление определённого элемента постоянному электрическому току; измеряется в омах. Отметим, что в данном случае речь идёт о традиционных замерах, не связанных со сверхвысокими сопротивлениями, характерными для изоляции (в изоляции этот параметр проверяют по отдельной методике, подробнее о ней см. ниже). Замеры сопротивления осуществляютс...я следующим образом: на щупы прибора подаётся определённое напряжение (невысокое, в пределах нескольких вольт), после чего они прикладываются к месту измерения — и по силе тока, протекающей через образовавшуюся цепь, вычисляется сопротивление проверяемого участка цепи или другого предмета. Таким образом, для работы в режиме омметра обязательно требуется источник питания — даже для аналогового прибора.

— Ёмкость. Ёмкость конденсатора, измеряется в фарадах (чаще микрофарадах и других производных единицах). Само измерение осуществляется за счёт подачи на конденсатор переменного тока. Данная функция может пригодиться как для уточнения ёмкости конденсаторов без маркировки (изначально не промаркированных или со стёртыми надписями), так и проверки качества подписанных деталей. На конденсаторах, помимо номинальной ёмкости, может указываться максимальное отклонение от номинала; если результаты замера выходят за пределы допустимого отклонения — значит, деталь лучше не использовать. Если же отклонения не указано, то можно исходить из того, что оно должно составлять не более 10% от номинала. К примеру, для детали на 0,5 мкФ диапазон допустимых ёмкостей будет составлять 0,45 – 0,55 мкФ.

— Температура. Измерение температуры — как правило, при помощи внешнего выносного датчика, обычно на щупе. В электротехнике данная функция применяется для контроля режима работы деталей, которые чувствительны к перегреву или которые должны работать в определённом температурном режиме.

— Частота. Возможность измерения частоты электрического сигнала характерна прежде всего для осциллографов и скопметров, однако может встречаться и в других типах приборов — тех же мультиметрах (см. «Устройство»). При этом, как правило, подразумевается возможность вывести на экран конкретные цифры, соответствующие частоте в герцах.

— Скважность. Скважность представляет собой одну из базовых характеристик равномерного импульсного сигнала, а именно отношение его периода следования к длительности отдельного импульса. Например, если за каждым импульсом длительностью 2 мс будет следовать пауза длиной 6 мс, то период следования сигнала будет составлять T=6+2 = 8 мс, а скважность — S=8/2 = 4. Не стоит путать скважность с коэффициентом заполнения: эти характеристики хотя и описывают одно свойство сигнала, но делают это по разному. Коэффициент заполнения — величина, обратная скважности, соотношение длины импульса к периоду следования (в нашем примере он будет равен 2/8 = 25 %). Этот термин встречается в основном в англоязычных и переводных источниках, в отечественной же электротехнике принят термин «скважность».

— Индуктивность. Индуктивность — главный рабочий параметр любой катушки индуктивности. Возможность замерять данный параметр бывает важна в свете того, что специалисты и радиолюбители часто делают катушки самостоятельно, и определить характеристики детали без специального прибора крайне трудно, а то и вообще невозможно. Принцип замера индуктивности аналогичен определению ёмкости конденсатора (см. выше) — пропускание через катушку переменного тока и отслеживания её «отклика». Тем не менее, данная функция встречается значительно реже, чем замер ёмкости.

— Сопротивление изоляции. Сопротивление изоляции электрических проводов переменному току. Изоляция по определению имеет чрезвычайно высокое сопротивление, поэтому традиционный способ замера сопротивления (при малом рабочем напряжении, см. выше) здесь неприменим — токи были бы слишком слабыми и точно измерить их было бы невозможно. Поэтому для проверки изоляционных материалов и других диэлектриков используются не омметры, а специальные приборы — мегаомметры (или мультиметры с поддержкой этого режима). Отличительной особенностью мегаомметра является высокое рабочее напряжение — в сотни, а то и тысячи вольт. Например, для проверки изоляции с рабочим напряжением 500 В требуется такое же напряжение мегаомметра, для материала на 3000 В — прибор на 1000 В и т.д, более детально требования по разными типам изоляции расписаны в специальных источниках. Для достижения такого напряжения может потребоваться внешний высоковольтный модуль, однако многие мультиметры с поддержкой данного типа замеров способны и самостоятельно генерировать кратковременные импульсы высокого напряжения от низковольтных источников питания вроде батареек АА или «Крона» (см. «Тип аккумулятора»). Отметим, что при работе с мегаомметром нужно особо тщательно соблюдать правила техники безопасности — вследствие высокого рабочего напряжения.

— Мощность. Мощность электрического тока определяется по двум базовым параметрам — силе тока и напряжению; грубо говоря, вольты нужно умножить на амперы, полученный результат и будет мощностью в ваттах. Таким образом, в теории определить этот параметр можно и без специальной функции по измерению мощности — достаточно определить напряжение и силу тока. Однако некоторые измерительные приборы имеют специальный режим, позволяющий сразу измерить оба базовых параметра и на их основе автоматически вычислить мощность — это удобнее и быстрее, чем проводить подсчёты отдельно. Многие из таких приборов относятся к токоизмерительным клещам (см. «Устройство») и замер силы тока при определении мощности осуществляется бесконтактным способом, а замер напряжения — классическим контактным. Есть и другие варианты конструкции — например, адаптер для розетки: электроприбор подключается в розетку через такой адаптер, а мультиметр снимает с адаптера данные по току и напряжению. Также напомним, что активная (полезная) мощность переменного тока не всегда равна полной — при ёмкостной и/или индуктивной нагрузке часть мощности (реактивная мощность) «съедается» конденсаторами/катушками. Подробнее об этих параметрах можно прочитать в специальных источниках, здесь же отметим, что разные модели мультиметров могут иметь разные возможности по измерению разных типов мощности; эти моменты не помешает уточнить перед покупкой заранее.

— Фазовый угол. Измерение степени сдвига двух электрических сигналов (или параметров сигнала) по фазе. Конкретные виды и особенности таких измерений бывают разными, наиболее популярны два варианта. Первый — замер разницы между фазами трёхфазного питания, прежде всего для оценки его общего качества. Второй — оценка сдвига по фазе между током и напряжением, возникающего при реактивной (ёмкостной или индукционной) нагрузке на источник переменного тока; от такого сдвига напрямую зависит соотношение между активной и полной мощностью (коэффициент мощности, «косинус фи»).

— Частота вращения. В данном случае чаще всего речь идёт о возможности измерения частоты вращения двигателя внутреннего сгорания. Соответственно, подобные модели обычно относятся к специализированным автомобильным мультиметрам. Они рассчитаны в основном на диагностику и тестирование двигателей, не имеющих электронных систем зажигания. Для измерения, как правило, нужно настроить мультиметр на число цилиндров двигателя и подключить его к системе зажигания (конкретный способ подключения нужно уточнять по документации к автомобилю).

Отметим, что в данном списке перечислены не все, а лишь самые популярные измерения, встречающиеся в современных мультиметрах и других приборах аналогичного назначения. Помимо них, в конструкции могут предусматриваться и более специфические возможности — подробнее см. «Другие измерения».

Постоянное напряжение макс.

Наибольшее постоянное напряжение (см. «Род напряжения»), которое можно эффективно измерить при помощи данного прибора.

Соблюдение этого параметра важно не только для корректных измерений, но ещё и с точки зрения безопасности. Замер слишком высокого напряжения может привести к сбоям в работе прибора, начиная от срабатывания аварийной защиты (а она может иметь вид одноразового плавкого предохранителя, требующего замены после срабатывания) и заканчивая полным выходом из строя и даже возгоранием. Поэтому превышать данный показатель ни в коем случае нельзя. Да и выбирать прибор по максимальному напряжению стоит с определённым запасом — хотя бы в 10 – 15%: это даст дополнительную гарантию на случай нештатных ситуаций. С другой стороны, запас не должен быть слишком большим: высокий порог постоянного напряжения может ухудшить точность замеров на малом вольтаже, а также сказаться на цене, габаритах и весе прибора.

Отметим, что большинство мультиметров и других подобных приборов имеют несколько диапазонов измерений, с разным максимальным порогом. А значит, для безопасного замера вольтажа, близкого к максимальному, нужно выставить соответствующий режим в настройках.

Точность измерения (V⁻)

Точность измерения, обеспечиваемая прибором.

Точность измерения для мультиметров принято указывать по наименьшей погрешности (в процентах), которую прибор способен обеспечить при замерах постоянного тока. Чем меньше число в данном пункте — тем, соответственно, выше точность. При этом подчеркнем, что учитывается именно наименьшая погрешность (наиболее высокая точность), достигаемая обычно лишь в определенном диапазоне замеров; в других диапазонах точность может быть и ниже. К примеру, если в диапазоне «1 – 10 В» прибор дает максимальное отклонение в 0,5 %, а в диапазоне «10 – 50 В» — 1 %, то в характеристиках будет указано 0,5 %. Тем не менее, по данному показателю вполне можно оценивать и сравнивать современные мультиметры. Так, прибор с меньшей заявленной погрешностью, как правило, и в целом будет более точным, чем аналогичная по характеристикам модель с большей погрешностью.

Данные по точности замеров в других диапазонах и режимах могут приводиться в подробных характеристиках прибора. Впрочем, на практике эта информация требуется не так часто — лишь для отдельных специфических задач, где принципиально необходимо знать возможную погрешность.

Переменное напряжение мин.

Верхняя граница нижнего поддиапазона, в котором прибор может замерять переменное напряжение (см. «Род напряжения»).

Рабочие диапазоны современных мультиметров и других измерительных приборов обычно разделяются на поддиапазоны. Это делается для точности и удобства при замерах: например, для проверки трансформатора, который должен выдавать на выходе 6 В, имеет смысл выставить поддиапазон с верхним порогом 10 В. Это позволит обеспечить точность до десятых долей вольта, недостижимую при замерах с более высоким порогом. Минимальное постоянное напряжение описывает именно нижний поддиапазон, рассчитанный на измерения самых малых значений напряжения: например, если в данном пункте указано 2000 мВ — это означает, что нижний поддиапазон охватывает значения до 2000 мВ (т.е. до 2 В).

Если прибор покупается для измерений в стационарных сетях — бытовых на 220 В или промышленных на 380 В — на данный параметр можно не обращать особого внимания: как правило, минимальные поддиапазоны при этом не используются. А вот для работы с блоками питания, понижающими трансформаторами и различной «тонкой» электроникой, обслуживаемой переменным током низкого напряжения, имеет смысл выбрать модель с минимальным напряжением пониже. Это связано не только с диапазоном измерений: низкий порог, как правило, свидетельствует о неплохой точности измерений на малых вольтажах в целом.

Переменное напряжение макс.

Наибольшее переменное напряжение (см. «Род напряжения»), которое можно эффективно измерить при помощи данной модели. Данный параметр важен не только для измерений как таковых, но и для безопасного обращения с прибором: замер слишком высокого напряжения в лучшем случае приведёт к срабатыванию аварийной защиты (и не исключено, что после этого придётся искать новый предохранитель взамен сгоревшего), в худшем — к поломке оборудования или даже возгоранию. Кроме того, для безопасных замеров крайне желателен запас по напряжению — это связано как с особенностями переменного тока, так и с возможностью возникновения различных нештатных ситуаций в сети, прежде всего скачков напряжения. К примеру, для сетей 220 В желательно иметь прибор не менее чем на 250 В, а лучше — на 300 – 310 В; детальные рекомендации для других случаев можно найти в специальных источниках.

Отметим, что большинство мультиметров и других подобных приборов имеют несколько диапазонов измерений, с разным максимальным порогом. А значит, для безопасного замера вольтажа, близкого к максимальному, нужно выставить соответствующий режим в настройках.

Постоянный ток мин.

Верхняя граница нижнего поддиапазона, в котором прибор может замерять постоянный ток (см. «Род тока»).

Рабочие диапазоны современных мультиметров и других измерительных приборов обычно разделяются на поддиапазоны. Это делается для точности и удобства при замерах: чем ниже поддиапазон, чем меньшие значения он охватывает — тем выше точность измерений на малых показателях тока. Минимальный постоянный ток описывает именно нижний диапазон, рассчитанный на самые слабые значения силы тока: к примеру, если в характеристиках в данном пункте указано 500 мкА — это значит, что нижний поддиапазон позволяет замерять токи от 0 до 500 мкА.

Выбирать по данному показателю стоит с учётом специфики планируемого примененения: например, прибор с низкими показателями может пригодиться при тонких работах, таких как ремонт компьютеров или мобильных телефонов, а вот для обслуживания бортовой электросети автомобилей, особенно старых, особо высокая чувствительность по току не требуется.

Тип аккумулятора

Тип аккумулятора, используемого в приборе. Отметим, что под термином «аккумулятор» в данном случае подразумеваются все разновидности автономных источников питания — и перезаряжаемые, и одноразовые. К таковым относятся: AAA, AA, C, "Крона", A23, CR2032 и др.

— AA. Классические «пальчиковые» батарейки, один из наиболее популярных в наше время типоразмеров. Выпускаются как в виде одноразовых элементов, так и в виде перезаряжаемых аккумуляторов; продаются практически повсеместно. Количество таких батареек, необходимое для питания мультиметра, может составлять от 1 до 8 — в зависимости от особенностей прибора.

— AAA. «Мини-пальчиковые» или «мизинчиковые» батарейки, аналогичные описанным выше АА, но имеющие уменьшенные размеры (и, соответственно, меньшую мощность и емкость). Впрочем, учитывая, что многие мультиметры тоже довольно компактны, а энергопотребление в них невелико, этот вариант встречается в измерительных приборах даже чаще, чем АА. Количество таких элементов в данном случае обычно составляет от 1 до 4.

— «Крона». Батарейки характерной прямоугольной формы с напряжением 9 В и парой контактов на одном из торцов. Высокое напряжение способствует точности измерений и позволяет даже в довольно «прожорливых» моделях использовать всего одну батар...ейку; так что данный вариант в мультиметрах довольно популярен. Отметим, что чаще всего «Кроны» выпускаются в виде одноразовых элементов, однако при желании можно найти и аккумуляторы такого типоразмера.

— Крона и ААА. Питание одновременно от двух описанных выше типов батарей. Как правило, каждый из таких источников питания отвечает за свою часть функционала (например, ААА — за замеры сопротивления, «Крона» — за проверку транзисторов), и при отсутствии одного из источников недоступными оказываются только возможности, непосредственно с ним связанные. Однако в целом подобное сочетание не особенно удобно и практично, из-за чего встречается редко.

— Крона и АА. Вариант, полностью аналогичный описанному выше «Крона + ААА» — за исключением того, что в данном случае вместо «мизинчиковых» используются пальчиковые батарейки. Также не пользуется популярностью.

— С. Цилиндрические 1,5-вольтовые элементы. Выпускаются в двух типах — аккумуляторы и батарейки; по длине аналогичны АА (50 мм), однако почти вдвое толще — 26 мм вместо 14 мм. Как следствие, обеспечивают более высокую емкость и мощность питания, однако из-за крупных размеров применяются в основном в продвинутых приборах настольного формата. При этом многие из таких приборов имеют функцию проверки изоляции, а число батареек С в них может составлять от 8 до 12 — это необходимо для создания высоких напряжений, применяемых при такой проверке.

— A23. Цилиндрические элементы, отличающиеся высоким напряжением — 12 В, притом что размер таких батареек составляет всего 29 мм в длину и 10 мм в диаметре. Чаще всего являются именно одноразовыми батарейками. В целом распространены слабо, из-за чего и в измерительных приборах применяются сравнительно редко.

— LR44 / SR44. Миниатюрные 1,5-вольтовые элементы питания в виде «таблеток» диаметром 11,6 мм и толщиной 5,4 мм. Делаются только одноразовыми; при этом индексом «LR44» маркируются простые и недорогие щелочные батарейки, индексом «SR44» — более дорогие и продвинутые серебряно-оксидные. В мультиметрах, как правило, можно использовать как одни, так и другие. В любом случае из-за небольших размеров мощность и емкость всех подобных батареек невелика, так что применяются они в основном в миниатюрных приборах — не рассчитанных на серьезные задачи и не имеющих в корпусе достаточно места для более солидных элементов питания.

— CR2032. Миниатюрные батарейки-«таблетки» напряжением 3 В, имеющие диаметр 20 мм и толщину 3,2 мм. Как и LR44 / SR44, встречаются в основном в небольших приборах — в т.ч. весьма миниатюрных, выполненных в форм-факторе ручки или даже брелока; однако за счет более крупных размеров обеспечивают более продвинутые характеристики питания, благодаря чему и встречаются заметно чаще. Элементы CR2032 делаются только одноразовыми.

— 18650. Съемные литий-ионные аккумуляторы цилиндрической формы, длиной 65 мм и диаметром 18 мм. При рабочем напряжении в 3,7 В могут иметь еще и довольно высокую емкость. Тем не менее, по ряду причин данный вариант популярностью не пользуется — его можно встретить в отдельных продвинутых приборах.

— Фирменный аккумулятор. Аккумуляторы, созданные специально под конкретные приборы (или серии приборов) и не относящиеся к стандартным типоразмерам; нередко делаются несъемными. Такие батареи могут иметь более продвинутые характеристики, чем сменные элементы питания, к тому же они избавляют от дополнительных трат — не нужно регулярно покупать батарейки (или отдельный аккумулятор с зарядником), достаточно время от времени заряжать имеющийся источник питания. С другой стороны, при исчерпании заряда такой аккумулятор нельзя быстро заменить на свежий — единственным вариантом является зарядка, а она требует наличия розетки и занимает время, иногда довольно значительное. Как следствие, данный способ питания особого распространения не получил.
Stanley STHT0-77364 часто сравнивают