Печатный материал
Материалы для печати, на которые рассчитан 3D-принтер.
Большинство современных технологий 3D-печати (см. выше) предполагают возможность использования более чем одного материала, причем эти материалы заметно различаются по свойствам. Поэтому выбор материалов ограничивается не только технологией, но и возможностями конкретного принтера, и при выборе этим параметром нельзя пренебрегать. На сегодня можно встретить в основном устройства, рассчитанные на такие материалы (по алфавиту):
ABS пластик,
ASA,
BVOH,
Carbon,
CPE,
Flex,
HIPS,
Nylon,
PC,
PETG,
PLA,
PP,
PVA,
SBS,
TPE,
Wood,
фотополимерная смола. Отдельную категорию представляют собой пищевые 3D-принтеры, позволяющие создавать скульптуры из шоколада, крема и т.п.
Вот описание материалов, получивших в наше время наибольшее распространение (как упомянутых выше, так и некоторых других):
— ABS. Одна из самых распространенных в наше
...время разновидностей термопластика; пользуется популярностью и в 3D-печати. При невысокой стоимости ABS весьма практичен: готовые изделия получаются прочными, довольно устойчивыми к деформации и ударам, нечувствительными к влаге и многим агрессивным жидкостям (щелочам, маслам, большому количеству моющих средств); также они имеют неплохой температурный диапазон эксплуатации (в среднем от -40 до 90 °С). А для плавки такого пластика требуются сравнительно невысокие температуры. Основных недостатков у ABS три. Во-первых, это чувствительность к прямому солнечному свету, быстрый износ в таких условиях (хотя здесь все зависит от конкретного сорта). Во-вторых, этот материал выделяет вредные испарения при нагреве — так что при работе желательно использовать защитные средства, или хотя бы обеспечивать эффективную вентиляцию помещения. В-третьих, ABS склонен сильно прилипать к печатному столу, что требует применения различных дополнительных ухищрений — нагрева стола, использования специального термоскотча и т. п. Также отметим, что готовые изделия из данного материала имеют шершавую поверхность, однако это может быть и преимуществом — в зависимости от ситуации.
— PLA. Еще один популярный материал для 3D-печати, прямой конкурент ABS. Одним из ключевых преимуществ PLA считается «натуральность» и экологическая безопасность: он производится из растительного сырья (в основном кукурузы и сахарного тростника), является биоразлагаемым и безопасен при нагреве. Кроме того, эта разновидность термопластика имеет более низкую температуру плавления и практически не прилипает к печатному столу. С другой стороны, обратной стороной упомянутой экологичности является ограниченный срок службы: PLA-пластик довольно быстро разлагается (от нескольких недель до нескольких лет, в зависимости от сорта). Другие заметные недостатки — цена (почти в два раза выше, чем у ABS) и хрупкость (что несколько усложняет печать — сильно согнутая нить легко ломается). Также стоит иметь в виду, что данный вид пластика не растворяется в ацетоне и требует других растворителей.
— Фотополимерная смола. Материал, применяемый для печати по технологиям SLA и DLP (см. «Технология печати»), а также получивший распространение в принтерах MJM, где он практически вытеснил термопластики. Название обусловлено тем, что в исходном состоянии такой материал имеет жидкую консистенцию, а твердеет (полимеризуется) он под воздействием интенсивного освещения. В наше время существует большое разнообразие фотополимерных смол, различающихся по технологическим характеристикам (вязкость, скорость застывания, чувствительность к свету) и практическим особенностям (застывший фотополимер может иметь свойства разных материалов). В любом случае печать с использованием подобных материалов отличается очень высокой точностью, однако фотополимеры стоят заметно дороже термопластиков.
— Nylon (нейлон). В 3D-печати нейлон используется сравнительно недавно, из-за чего встречается реже других популярных термопластиков. По сравнению с ABS этот материал требует более высоких температур, выделяет больше вредных веществ, а в готовом виде склонен накапливать влагу и терять прочность, что выдвигает определенные ограничения по использованию. С другой стороны, нейлоновые изделия получаются не такими твердыми, что в некоторых случаях является преимуществом — в частности, при медицинском применении: из такого материала можно печатать шины и протезы с характерной сетчатой структурой, сочетающие в себе легкость и прочность.
А вот подробное описание остальных, более редких материалов:
— ASA. Атмосферостойкий материал, созданный в расчете на устранение основного недостатка ABS — чувствительности к воздействию окружающей среды (прежде всего солнечного цвета). В итоге получился достаточно прочный и жесткий материал, который в то же время довольно прост в печати и не теряет своих свойств при длительном пребывании на открытом воздухе. Изделия из ASA подходят даже для применения в автомобилях; еще одно преимущество этого вида термопластика — очень небольшая усадка при охлаждении. К недостаткам же можно отнести более высокую стоимость, чем у ABS.
— BVOH. Вспомогательный водорастворимый филамент, применяемый для печати поддерживающих конструкций с выступами и нависающими элементами, а также подвижных механизмов. BVOH — это аббревиатура от Butenediol Vinyl Alcohol Copolymer (сополимер бутендиола и поливинилового спирта). Фламент обладает отличной межслойной адгезией и хорошо спекается с материалом самой модели, благодаря чему поддержки не отклеиваются от детали в процессе 3D-печати. Оптимальной температурой экструзии для данного пластика является диапазон от 210 до 220 °C. Материал легко растворяется в обычной воде — с его помощью можно создать прочную основу в области, где требуются опоры, и получить гладкую поверхность без остатков нити при использовании в печати других видов пластика (PLA, ABS и PET).
— Carbon. Печатный материал на основе полимера с добавлением углеродного волокна, разработанный компанией Carbon Inc и получивший одноименное название. Он является прекрасной альтернативой Nylon-пластику, обладает высокой межслойной адгезией и низкой деформационной усадкой. Также Carbon имеет высокую прочность и устойчивость к температурным воздействиям. Используется этот материал для создания функциональных деталей, прототипов, инструментов, механически нагруженных деталей, корпусов для различных приборов, деталей для ремонта бытовой техники в самых разнообразных отраслях (включая автомобилестроение, медицину и т.п.). Пластик Carbon подходит практически для всех моделей настольных 3D-принтеров.
— CPE. Сополиэфир CPE — это химически стойкий и относительно прочный материал для печати, характеризуемый высокой ударной вязкостью и устойчивостью к температурным воздействиям. Он обычно включает полиэтилен (PE) и полиэфир в разных пропорциях. CPE обладает хорошей прочностью и гибкостью, что делает его подходящим для создания функциональных деталей в различных сферах: прототипирование, моделирование, производство функциональных деталей и т.п. Рекомендуемая температура сопла для печати CPE-пластиком должна составлять от 230 до 260 °C. Температура же печатной платформы может различается в зависимости от принтера и размера сопла — зачастую она находится в диапазоне от 70 до 85 °C.
— Flex. Разновидность термопластика на основе полиуретана, главной особенностью которой является гибкость и эластичность готовых изделий — отсюда и название. По своим свойствам Flex нередко сравнивают с твердым силиконом: он не боится ударов, нечувствителен к маслу, бензину и многим другим агрессивным жидкостям, износостоек и долговечен (разве что рабочая температура для готовых изделий из этого вида пластика составляет в среднем до 100 °С). Этот материал вполне подходит для FDM-печати (см. «Технология печати»), однако он требует специальных настроек; поэтому для использования Flex-пластика лучше всего выбирать принтеры, где совместимость с ним прямо заявлена.
— HIPS. Материал, применяемый как вспомогательный — для создания опор под деталями, находящимися на весу. Совместимость с HIPS может означать, что принтер имеет более одного экструдера: через одно сопло в таких случаях подается основной материал, через другой — материал опор. Впрочем, встречаются и модели на одно сопло, совместимые с этим видом пластика — в них печать опор и основного изделия осуществляется поочередно. Как бы то ни было, после окончания печати опоры из HIPS можно удалить при помощи специального растворителя. В этом плане данный вид термопластика несколько сложнее в использовании, чем аналогичный по применению PVA (см. ниже), растворяющийся в обычной воде; с другой стороны, в качестве растворителя для HIPS можно использовать обычную лимонную кислоту, а стойкость к влаге упрощает хранение расходников. Также отметим, что данный материал рекомендуется использовать исключительно в сочетании с ABS: последний имеет схожие требования к режиму печати и не повреждается растворителями для HIPS.
— PC. Пластик-поликарбонат (PolyCarbonate) из группы аморфных термопластов с высокой степенью прозрачности. PC является одним из популярных материалов, используемых для создания прозрачных или полупрозрачных деталей (линз, защитных шлемов для вело- и мотоспорта, светотехнических изделий и т.п.). Поликарбонат обладает отличной ударопрочностью и устойчивостью к высоким температурам, не вступает в реакцию со многими химическими веществами, хорошо изолирует электричество. Пластик PC имеет высокую температуру плавления (от 150 °С), а его текучесть достигается при температурах порядка 280 – 300 °C.
— PETG. Также встречаются обозначения PET, PETT. Все это разновидности одного и того же материала: PET — оригинальный полиэтилен, PETG дополнен гликолем для снижения хрупкости и упрощения печати (благодаря чему является наиболее популярной в 3D-принтерах разновидностью), а PETT прозрачен и заметно жестче PETG. В любом случае по основным особенностям эти виды термопластика представляют собой нечто среднее между популярными ABS и PLA: они проще в использовании, чем первый вариант, и более пластичны, чем второй. Главными недостатками PETG являются склонность накапливать влагу (в этом плане данный материал схож с нейлоном) и меньшая стойкость к царапинам, чем у того же ABS.
— PP. Полипропилен весьма популярен в различных изделиях из пластика, однако в 3D-печати не получил особого распространения — в основном из-за значительной усадки и трудностей с обеспечением нужного качества соединения между слоями. Кроме того, PP плохо переносит низкие температуры. В то же время у этого материала есть и преимущества: он хорошо противостоит истиранию, имеет неплохие показатели прочности, к тому же безопасен в производстве и химически инертен.
— PVA. Материал, известный многим по канцелярскому клею ПВА. В 3D-печати используется в принтерах как дополнительный, аналогично описанному выше HIPS: из PVA печатаются опоры и другие вспомогательные элементы, которые должны быть удалены из готового изделия. При этом данный материал имеет два важных преимущества перед HIPS. Во-первых, PVA растворяется в воде, что избавляет от необходимости искать специальные растворители. Во-вторых, он может использоваться не только с ABS, но и с другими термопластиками. Главный недостаток данного материала связан, опять же, с растворимостью в воде: PVA нужно хранить в максимально сухих условиях, так как даже повышенная влажность воздуха может ухудшить его свойства.
— SBS. Относительно новый вид термопластика, главной особенностью которого является прозрачность: из SBS можно создавать изделия, внешне практически неотличимые от стеклянных (в том числе окрашенные в разные цвета). Кроме того, этот материал более гибок и эластичен, чем ABS, что бывает преимуществом как в готовых изделиях, так и в процессе печати: нить, поступающая в экструдер, не сломается даже при сильном перегибе или значительном растяжении. Прочность SBS достаточно высока, а благодаря химической инертности он подходит даже для пищевой посуды. Главные недостатки этого материала — довольно высокая температура печати и низкая адгезия между слоями, затрудняющая процесс.
— TPE. Термопластичный эластомер, сочетающий в одном флаконе свойства пластика и резины. TPE обладает высокой эластичностью и гибкостью, что позволяет использовать этот материал для создания гибких и упругих деталей, которые могут деформироваться под давлением и возвращаться к исходной форме. Его применяют для изготовления уплотнителей и прокладок, эластичных частей игрушек, обуви, чехлов для мобильных гаджетов, автомобильных деталей (в т.ч. элементов салона и покрышек). TPE характеризуется антиаллергенными свойствами, устойчивостью к царапинам, хорошими адгезионными качествами.
— Wood. Разновидность пластика PLA (см. выше), имеющая в составе мелкую древесную пыль. Благодаря этому изделия из такого материала очень похожи на ощупь на деревянные, а внешне могут быть практически неотличимы. Еще одна интересная особенность заключается в том, что за счет изменения температуры экструдера можно менять оттенок материала: усиление нагрева приводит к потемнению содержащегося в составе дерева. Основные свойства Wood аналогичны PLA, а вот количество опилок может быть разным; чем оно выше — тем ближе готовое изделие к деревянному, однако тем ниже его упругость и прочность. Собственно, одним из недостатков этого материала является относительно низкая прочность. Также стоит учитывать, что Wood плохо совместим с узкими соплами (они склонны забиваться частицами дерева).
— PC. Поликарбонат — одна из наиболее популярных в мире разновидностей пластика и один из самых прочных и надежных материалов, использующихся в 3D-печати. Помимо механической прочности, отличается стойкостью к нагреву. С другой стороны, температура печати также должна быть довольно высокой, к тому же ее надо тщательно контролировать из-за значительной усадки; а вследствие гигроскопичности материала при работе нужно поддерживать еще и невысокую влажность. Все это заметно усложняет печать, так что в этом формате поликарбонат используется весьма редко.
— PC/ABS. Смесь двух видов пластика, созданная в расчете на то, чтобы сделать поликарбонат более пригодным для 3D-печати при сохранении его основных достоинств. Изделия из этого материала получаются прочными, жесткими, стойкими к ударам и нагреву; а процедура печати хоть и довольно сложна, однако все же значительно проще, чем у чистого PC.
— Carbon (Carbon Fiber). Композитный материал на основе углеродных волокон, дополненных термопластиковым наполнителем — обычно нейлоном, хотя возможно применение и других видов 3D-пластика (ABS, PLA и т. п.). Конкретные свойства подобного материала зависят от состава наполнителя и процентного содержания волокон, однако есть и общие особенности. С одной стороны, такой материал довольно дорог, однако в то же время более прочен и надежен, чем соответствующий пластик без углеродного волокна; многие разновидности карбона с успехом применяются для полнофункциональных деталей, работающих под высокими нагрузками. Кроме того, углеволокно придает материалу упругость. С другой стороны, для печати требуются специальные сопла высокой твердости — из нержавеющей стали либо с рубиновым наконечником; более мягкие материалы быстро стачиваются из-за абразивных свойств углеволокна.
— TPU. Материал из класса так называемых пластических эластомеров на основе полиуретана. От других материалов того же класса отличается, с одной стороны, более высокой жесткостью, с другой — прочностью и стойкостью к низким температурам. При этом TPU достаточно гибок и эластичен, если сравнивать его с термопластиками в целом, а не только с полиуретановыми пластическими эластомерами.
— PEEK. Термопластик полукристаллического типа, отличающийся высокой прочностью, стойкостью к химическим и тепловым воздействиям, а также к истиранию. Благодаря подобным свойствам PEEK может применяться в деталях, испытывающих значительные нагрузки — подвижных частях механических передач и даже деталях автомобильных двигателей. С другой стороны, тугоплавкость требует высокой температуры при печати и закрытой термокамеры, а сам материал обходится недешево. Из-за этого данный вид термопластика практически не используется в бытовых 3D-принтерах, основным его применением является профессиональная сфера.
— HDPE. Разновидность полиэтилена, так называемый полиэтилен низкого давления (высокой плотности). Весьма популярный материал среди современных пластиков, используется в пластиковых бутылках, многих разновидностях пищевой упаковки и т. п.; однако в 3D-печати популярностью не пользуется. Это обусловлено рядом сложностей при послойном нанесении: HDPE очень быстро застывает, из-за чего печатать нужно на высокой скорости — иначе адгезия между слоями может оказаться недостаточной. Кроме того, данный вид полиэтилена сильно подвержен усадке, поэтому печать требует равномерного прогрева всей модели — а для этого требуется закрытая рабочая камера и нагреваемая платформа. С другой стороны, расходники для печати очень дешевы, их можно получать простейшей переработкой бытовых отходов (тех же пластиковых бутылок).
— CoPET. Разновидность полиэтилена, несколько отличающаяся по технологии производства от обычного PET. По заявлению создателей, за счет этого достигается более высокая надежность, долговечность и стойкость к воздействиям окружающей среды, чем у ABS и тем более PLA. При этом CoPET недорог и прост в использовании, так как имеет достаточно низкую температуру плавления и отличную адгезию между слоями. С другой стороны, эксплуатационные температуры у готовых изделий тоже невысоки — не более 60 °С. Кроме того, этот материал труден в постобработке и не поддается стандартным растворителям, а действующие на него растворители во многих странах запрещены к свободной продаже.
— POM. Материал промышленного уровня, отличающийся высокой прочностью, низким трением и стойкостью к холоду. Благодаря этому из POM можно печатать даже шестеренки и другие аналогичные детали (в том числе подвергающиеся значительным механическим нагрузкам), а также элементы подшипников. С другой стороны, сама процедура печати весьма сложна, для нее требуется закрытая камера с тщательным контролем температуры, так как материал отличается высокой усадкой. Кроме того, деталь из POM сложно закрепить на печатном столе из-за низкой адгезии: требуется качественный клей, который непросто подобрать.
— Rubber. Термопластик, по своим свойствам напоминающий резину или каучук и близкий к описанному выше пластику типа FLEX. Впрочем, по сравнению с «флексом» Rubber еще более мягок и эластичен; в то же время он прочен и хорошо противостоит повреждениям (хотя, по той же причине — труден в механической обработке). Один из характерных примеров применения этого материала — печать колес; кроме того, он очень устойчив к растворителям и эффективно противостоит даже довольно агрессивным средам, для которых не подходят менее стойкие материалы. К однозначным недостаткам данного типа пластика можно отнести прежде всего высокую температуру печати.Формат файлов 3D моделей
Формат файлов 3D-моделей, с которыми способен работать принтер.
Проекты 3D-моделей создаются при помощи специальных программ (САПР — систем автоматизированного проектирования), при этом такие программы могут использовать разные форматы файлов, часто несовместимые между собой. Данная информация может пригодиться как для подбора САПР под конкретную модель принтера, так и для оценки того, подойдут ли уже готовые проекты для печати на выбранной модели.
Среди наиболее распространенных в наше время разрешений (по алфавиту) — .3ds, .amf, .ctl, .dae, .fbx, .gcode, .obj, .slc, .stl, .ply, .vrml, .zrp.
Совместимое ПО
Программы для построения моделей, с которыми оптимально совместим принтер. ПО, используемое для 3D-печати, включает как САПР (системы автоматического проектирования для создания моделей), так и слайсеры (программы, которые разбивают трехмерную модель на отдельные слои, готовя ее к печати). Поэтому в данном пункте нередко указывается целый список программных продуктов.
Отметим, что степень оптимизации в данном случае может быть разной: некоторые модели совместимы только с заявленными программами, однако немало принтеров способны работать и со сторонними САПР. Тем не менее, лучше всего выбирать ПО, прямо заявленное производителем: это позволит максимально реализовать возможности принтера и сведет к минимуму вероятность сбоев и «нестыковок» в работе.
Габариты модели (ВхШхГ)
Максимальные габариты изделия, которое можно напечатать на 3D-принтере в один заход.
Чем крупнее габариты модели — тем шире выбор у пользователя, тем большее разнообразие размеров доступно для печати. С другой стороны, «крупногабаритные» принтеры занимают немало места, да и на стоимости устройства этот параметр заметно сказывается. Кроме того, при печати FDM/FFF (см. «Технология печати») для большой модели желательны более крупные сопла и более высокая скорость печати — а эти особенности отрицательно влияют на детализацию и ухудшают качество печати небольших изделий. Поэтому при выборе не стоит гнаться за максимальными размерами — стоит реально оценивать габариты объектов, которые планируется создавать на принтере, и исходить из этих данных (плюс небольшой запас на крайний случай). Кроме того, отметим, что крупное изделие можно печатать по частям, а затем скреплять эти части между собой.
Что касается конкретных значений каждого размера, то все три основных габарита имеют одинаковое деление на условные категории (небольшой размер, средний, выше среднего и крупный):
— высота —
менее 150 мм,
151 – 200 мм,
201 – 250 мм,
более 250 мм;
— ширина —
менее 150 мм,
151 – 200 мм,
201 – 250 мм,
более 250 мм;
— глубина —
менее 150 мм,
151 – 200 мм,
201 – 250 мм,
более 250 мм.
Объем модели
Наибольший объем модели, которую можно напечатать на принтере. Этот показатель напрямую зависит от максимальных габаритов (см. выше) — как правило, он соответствует этим габаритам, перемноженным друг на друга. Например, габариты 230х240х270 мм будут соответствовать объему в 23*24*27 = 14 904 см3, то есть 14,9 л.
Конкретный смысл этого показателя зависит от используемой технологии печати (см. выше). Принципиальными эти данные являются для фотополимерных технологий SLA и DLP, а также для порошковой SHS: объем модели соответствует количеству фотополимера/порошка, которое нужно загрузить в принтер для печати изделия в максимальную высоту. При меньшем размере это количество может уменьшаться пропорционально (к примеру, для печати модели в половину максимальной высоты потребуется половина объема), однако некоторые принтеры требуют полной загрузки независимо от размеров изделия. В свою очередь, для FDM/FFF и других аналогичных технологий объем модели имеет скорее справочное значение: в них фактический расход материала будет зависеть от конфигурации печатаемого изделия.
Что касается конкретных цифр, то объем
до 5 л включительно можно считать небольшим,
от 5 до 10 л — средним,
более 10 л — крупным.
Скорость печати
Скорость печати, обеспечиваемая 3D-принтером типа FDM/FFF (см. «Технология печати»).
Скорость печати в данном случае — это максимальное количество материала, которое может пройти через штатное сопло за секунду. Чем выше это значение (
150 мм/с,
180 мм/с,
200 мм/с,
500 мм/с и выше) — тем быстрее принтер способен справиться с тем или иным заданием. Разумеется, фактическое время изготовления будет зависеть от конфигурации модели и выставленных параметров печати, но при прочих равных принтер с более высокой скоростью и на практике будет работать быстрее. С другой стороны, увеличение скорости требует повышения мощности нагрева (дабы экструдер успевал расплавить нужный объем материала), мощности обдува (иначе пластик не успеет нормально застыть), а также более строгого контроля перемещения экструдера (чтобы компенсировать инерцию от быстрых движений). Так что в целом данный параметр сильно зависит от ценовой категории и специализации устройства, а специально искать «быструю» модель стоит в тех случаях, когда быстрота изготовления имеет для вас решающее значение. В ином случае достаточно и
модели на 100 мм/с или
120 мм/с, а то и меньше.
Температура стола
Максимальная температура нагрева в 3D-принтерах с подогревом стола (подробнее см. соответствующий пункт). Чем выше её порог, тем больше разновидностей пластика можно использовать для печати. Так, модели с подогревом поверхности до 100 °С подойдут для 3D-печати PLA-пластиком, с температурой стола от 100 до 120 °С — для работы с ABS-пластиком и нейлоном, высокотемпературные — допускают применение поликарбоната и тугоплавких разновидностей пластика.
Температура экструдера (сопла)
Температура нагрева, обеспечиваемая экструдером в принтере формата FDM/FFF или PJP (см. «Технология печати») .
От данного параметра напрямую зависит совместимость с тем или иным печатным материалом. К примеру, для пластика PLA нужны температуры порядка 180 – 230 °С, для ABS потребуется уже 220 – 250 °С, а для поликарбоната — не менее 270 °C. Температура однозначно не должна быть слишком низкой — иначе материал попросту не сможет нормально расплавиться. А вот запас в большинстве случаев вполне допускается — к примеру, немало моделей, совместимых с PLA, работают на температурах около 250 °С, а то и 280 °С.
Таким образом, более высокая рабочая температура расширяет возможности принтера и его совместимость с различными видами термопластиков. С другой стороны, чем сильнее нагрет материал — тем хуже он остывает; для обеспечения достаточной эффективности застывания приходится либо снижать скорость печати (что увеличивает затраты времени), либо повышать интенсивность обдува (что сказывается на стоимости). Ну и в любом случае при выборе стоит ориентироваться прежде всего на материалы, совместимость с которыми прямо указана в характеристиках.
Функции и возможности
Дополнительные функции и возможности принтера.
Список наиболее популярных подобных функций в современных 3D-принтерах включает, в частности,
подогреваемый стол,
закрытую камеру печати,
сканирование модели,
встроенную камеру,
LCD дисплей (в том числе
сенсорный),
датчик филамента, а также
возобновление прерванной печати. Вот более подробное описание этих особенностей:
— Подогреваемый стол. Наличие подогрева в печатном столе — поверхности, которая используется как опора для создаваемой модели. Эта функция встречается в основном в принтерах FDM/FFF (см. «Технология печати») и аналогичных им. Подогреваемый стол обеспечивает плавное и равномерное остывание материала, уменьшая вероятность деформаций в готовых моделях; это особенно важно при использовании материалов со значительной усадкой. Также отметим, что данная функция особенно эффективна в сочетании с закрытой камерой печати (см. ниже).
— Закрытая камера печати. Рабочая зона, имеющая закрытую конструкцию. Конкретное устройство такой камеры может быть разным — от огороженной с четырех сторон платформы до герметичного отсека, в котором можно даже создавать вакуум для некоторых специфических методов печати. Эти нюансы стоит уточнят
...ь отдельно. В любом случае закрытая камера защищает печатаемое изделие от пыли, влаги и других загрязнений; а вот более конкретный смысл этой особенности может быть разным — в зависимости от технологии печати (см. выше). Так, в принтерах FFF/FDM и аналогичных им устройствах закрытая конструкция позволяет добиться более равномерного охлаждения заготовки и избежать деформаций из-за усадки материала. А агрегаты типа SLA и DLP практически все имеют такую конструкцию — даже в самых простых моделях из этой категории рабочая зона прикрыта как минимум светофильтром, защищающим пользователя от яркого света.
— Сканирование модели. Встроенный трехмерный сканер, позволяющий создавать «цифровые слепки» различных предметов. Затем на основе такого слепка принтер может воссоздать копию отсканированного предмета. Данная функция фактически превращает устройство в трехмерный копировальный аппарат: пользователю не нужно строить модель в программе САПР, достаточно иметь при себе образец для копирования. Впрочем, при необходимости цифровой образ можно и отредактировать — как правило, сканер позволяет передавать полученные данные в те же программы САПР.
— Встроенная камера. Собственная цифровая камера, установленная прямо в принтере и направленная на рабочую зону. Предназначена для фиксации рабочего процесса; чаще всего позволяет снимать как фото, так и видео, но конкретные возможности съемки не помешает уточнить отдельно. Касательно использования камер стоит отметить, что принтеры с таким оснащением обычно имеют также модули Wi-Fi и/или сетевые разъемы LAN (см. «Передача данных»). Это позволяет передавать отснятое видео по локальной сети или даже через Интернет (эти детали, опять же, стоит уточнять для каждой модели), а дальнейшее применение отснятых материалов зависит прежде всего от желания пользователя. Один из самых популярных способов такого применения — дистанционный контроль печати: при наличии камеры следить за процессом можно, не подходя лишний раз к принтеру. Помимо этого, данные с камеры (в режиме прямой трансляции или в записи) могут использоваться как демонстрация, как наглядное пособие при обучении/инструктаже и т.п.
— Возобновление прерванной печати. Функция, позволяющая продолжать процесс печати после того, как он был остановлен. Бывает полезна прежде всего в тех случаях, когда принтер используется в строго определенные часы — например, в рабочее время; также может пригодиться в случае отключения принтера из-за сбоев в электропитании .Второй вариант достаточно очевиден; а касательно первого напомним, что 3D-печать представляет собой довольно длительный процесс, и создание даже небольшого изделия занимает часы. Из-за этого нередко возникают ситуации, когда рабочего дня (или другого схожего периода времени) не хватает для завершения работы. В подобных ситуациях и пригодится возобновление печати: принтер можно «поставить на паузу» на время отсутствия, а вернувшись к агрегату — продолжить процесс. Однако стоит учитывать, что при работе с некоторыми печатными материалами перерывы в работе нежелательны; так что если вы планируете использовать данную функцию — не помешает уточнить её совместимость с используемым материалом.
— Датчик филамента. Датчик для контроля подачи пластикового филамента в процессе печати. Как правило, такой сенсор устанавливается на экструдере (печатной головке). Если пластик вдруг закончится или его подача будет прервана, датчик позволит предотвратить неудачное завершение печати из-за нехватки материала — при обнаружении отсутствия нити он передает сигнал для остановки печати, чтобы пользователь мог добавить филамент и возобновить процесс.