Кратность увеличения
Диапазон кратностей увеличения, обеспечиваемый прибором — от минимальной до максимальной.
Кратность микроскопа высчитывается по формуле «кратность окуляра умножить на кратность объектива». Например, 20х объектив с
10х окуляром дадут кратность 10*20 = 200х. Современные микроскопы могут оснащаться револьверными головками на несколько объективов, зум-объективами (см. ниже) и сменными окулярами — так что в большинстве моделей кратность можно регулировать. Это позволяет подстраивать устройство под разные ситуации: когда нужно рассмотреть мелкие детали, используется высокая степень увеличения, а вот для расширения поля зрения кратность нужно уменьшать.
Подробные рекомендации по оптимальным кратностям для разных задач можно найти в специальных источниках. Здесь же отметим, что многие производители идут на хитрость и указывают максимальное значение кратности по степени увеличения, достигаемой с дополнительной линзой Барлоу. Такая линза действительно может дать серьёзный прирост кратности, однако не факт, что изображение при этом получится качественным; подробнее см. «Комплектация».
Объектив
—
Зум-объектив. Объектив с переменной кратностью увеличения. Такая оптика позволяет плавно изменять общую кратность микроскопа в определённых пределах, не меняя объектива/окуляра и даже не отрываясь от наблюдений. С другой стороны, зум-объективы сложнее и дороже оптики с постоянной кратностью. Поэтому применяются они в основном в стереоскопических микроскопах (см. «Тип»): при ремонте, сборке и других задачах, для которых применяются такие приборы, возможность плавной подстройки кратности бывает крайне полезной.
— Кратность увеличения. Кратность увеличения, обеспечиваемая объективом. Этот параметр, наряду с кратностью окуляра, влияет на общую степень увеличения прибора (см. выше). Напомним, что немало современных микроскопов имеют револьверные головки с несколькими объективами, что позволяет подстраивать увеличение и ширину поля зрения под ту или иную ситуацию; для таких моделей в данном пункте указывается кратность всех установленных объективов, например, «4х, 10х, 40х». Также стоит сказать, что информация о кратности может содержать также дополнительную маркировку, сообщающую об особенностях объектива. Так, буква s в скобках — например, «40x(s)» — означает, что объектив дополнен пружинным механизмом, за счет чего снижается вероятность раздавить препарат при приближении вплотную. Так называемые иммерсионные объективы, которые «смотрят» на препарат через специальную жидкость, маркируются по типу используемой жидкости — «Oil» (наприм
...ер, «10x Oil») или «МИ» для специального масла, «W» или «ВИ» для дистиллированной воды и «Glyc» или «ГИ» для глицерина (последний применяется в основном во флуоресцентной микроскопии). А индекс PH (иногда с цифрой) означает фазовый объектив, предназначенный для соответствующего метода исследования; при этом цифра на объективе должна соответствовать обозначению на другой детали — фазовом конденсоре.
— Ахромат. Одна из разновидностей цветовой коррекции, применяемой в объективах. Необходимость цветовой коррекции обусловлена тем, что свет разных цветов по-разному преломляется линзами, и без дополнительных мер изображение в микроскопе расплывалось бы радужными разводами. Ахроматика — одна из простейших разновидностей цветовой коррекции, в такой оптике скорректированы цветовые искажения по жёлтому и зелёному цвету. Объективы-ахроматы отличаются простотой конструкции и невысокой стоимостью. Правда, качество изображения в них далеко от идеала: чёткое изображение такой объектив даёт только в центре картинки, ширина зоны резкости составляет около трети от общей ширины поля зрения, а по краям изображения могут появляться красно-синие разводы. Впрочем, этого вполне достаточно для общего ознакомления, начального обучения, а нередко — и для более серьёзных задач.
— Планахромат. Улучшенная и доработанная разновидность ахроматических объективов (см. выше). В планахроматах предусматривается дополнительная коррекция кривизны поля, благодаря чему область чётко видимого изображения в таких объективах составляет не менее 2/3 от общей ширины поля зрения, а нередко — и более. Именно такие объективы рекомендуются для серьёзной учёбы и профессионального применения.
— Посадочный диаметр. Размер резьбы, используемой для установки объектива. Больший посадочный диаметр, как правило, означает большую ширину объектива, а значит — более высокую светосилу и лучшее качество изображения. С другой стороны, крупный размер сказывается на габаритах, весе и стоимости оптики. В современных микроскопах в основном встречаются диаметры от 20 до 35 мм. Зная размер резьбы, можно приобретать сменные или запасные объективы для устройства.Окуляр
—
Монокуляр. Окуляр с одной линзой, в который можно смотреть только одним глазом. По очевидным причинам используется только в биологических микроскопах (см. «Тип»). Преимуществами монокуляров являются прежде всего меньшие размеры и стоимость, чем у других разновидностей; кроме того, они не требуют подстройки по межзрачковому расстоянию. С другой стороны, постоянно смотреть в окуляр одним глазом утомительно, поэтому данный вариант слабо подходит для ситуаций, когда в микроскоп приходится заглядывать часто и подолгу.
—
Бинокуляр. Сдвоенный окуляр, в который можно смотреть сразу обоими глазами. Отметим, что такая оптика применяется не только в стереомикроскопах, изначально предназначенных для рассматривания предмета через два объектива (см. «Тип»), но и в биологических микроскопах с одним объективом. Дело в том, что смотреть в оптический прибор двумя глазами значительно удобнее, чем одним, глаза при этом меньше нагружаются и усталость наступает не так быстро. Поэтому для серьёзных задач, связанных с частым использованием микроскопа, оптимальным вариантом являются бинокуляры (или тринокуляры, см. ниже). Обходится такая оптика дороже монокулярной, однако это компенсируется удобством использования.
—
Тринокуляр. Разновидность бинокуляра (см. соответствующий пункт), дополненная третьим оптическим каналом для специальной камеры-видеоокуляра. Такая камера, как пр
...авило, подключается к ПК или ноутбуку; установив её в гнездо для третьего окуляра, можно осуществлять фото- и видеосъёмку, а также выводить изображение в реальном времени на экран компьютера. Одновременно с этим можно смотреть в микроскоп и обычным способом. Устройства с тринокулярами весьма функциональны и универсальны, однако сложны и стоят недёшево.
— LCD-экран. Наличие у микроскопа LCD-экрана, заменяющего традиционный окуляр. К такому прибору не нужно всякий раз наклоняться для просмотра изображения, что бывает очень удобно, если наблюдения нужно совмещать с ведением записей и другими подобными занятиями. Микроскопы подобной конструкции обычно имеют функцию фото- и видеосъёмки, а также различные встроенные инструменты — например, масштабную сетку для оценки размеров видимых объектов, выводящуюся прямо на экран. Кроме того, изображение на экране может видеть не только непосредственный пользователь, но и все, кто находится рядом; такие возможности бывают незаменимы во время учебных занятий, консультаций, презентаций и т. п. С другой стороны, подобные микроскопы получаются громоздкими и дорогими.
— Кратность увеличения. Кратность увеличения, обеспечиваемая окуляром. Этот параметр, наряду с кратностью объектива, влияет на общую кратность увеличения прибора (см. выше). Классическим вариантом для окуляров в микроскопах считается 10х, однако встречаются и более высокие значения. В комплект поставки может входить несколько окуляров, разной кратности — для изменения общей степени увеличения. Встречается обозначение кратности с буквенным индексом, например, WF10x. Это означает, что окуляр имеет расширенное поле зрения (WF — широкое, EWF — экстра-широкое, UWF — сверхширокое).
— Наклон. Угол наклона окуляра указывается относительно горизонтали — и только в тех моделях, где окуляр не является вертикальным и не имеет регулировки по углу наклона (о том и другом см. ниже). Наиболее популярный вариант в подобных моделях — 45°, когда окуляр расположен, по сути, ровно посредине между строго вертикальным и строго горизонтальным положением. Такой наклон достаточно удобен в разных ситуациях — и если пользователь сидит за столом, и если он стоя наклоняется к стоящему на столе микроскопу. Не такой популярный, но все же весьма распространенный вариант — 30°, предполагающий более близкое к горизонтали положение окуляров; такая конструкция оптимально подходит для работы сидя, но вот наклоняться к подобному прибору уже не очень удобно. И наоборот, угол в 60° отлично подходит для работы стоя, но и только; поэтому данный вариант можно встретить очень редко, буквально в единичных моделях.
— Регулируемый наклон. Возможность изменять угол наклона окуляра позволяет подстраивать прибор под конкретные ситуации. Так, для работы сидя за столом лучше подходит небольшой наклон (близкий к горизонтали), а если нужно постоянно наклоняться к микроскопу — угол лучше увеличить, подняв окуляр ближе к вертикали. В то же время регулируемый наклон усложняет конструкцию прибора и увеличивает ее стоимость, притом что на практике реальная потребность в подобном функционале возникает не так часто. Также стоит сказать, что для упрощения конструкции в некоторых моделях наклонным делается весь установленный на основании прибор — включая объектив и предметный столик. Однако такие устройства имеют другой недостаток: наклон предметного столика прямо связан с наклоном окуляра, и если нужно разместить препарат строго горизонтально — то оптику неизбежно придется установить вертикально, без других вариантов. Поэтому регулируемый наклон (во всех вариантах) в наше время встречается достаточно редко.
— Без наклона. Еще более редкий и специфический вариант: окуляр и вся оптическая система в таких моделях расположены строго вертикально. В подобный микроскоп не очень удобно смотреть, даже стоя над рабочим столом, а для сидячего положения такие модели и вовсе практически непригодны. С другой стороны, у этой конструкции есть и свои преимущества. Прежде всего она получается более простой и надежной, чем в аналогах с наклонным окуляром — благодаря отсутствию дополнительных зеркал и призм; а предметный столик в таких устройствах всегда расположен строго горизонтально, что бывает немаловажно при работе с некоторыми препаратами.
— Посадочный диаметр. Номинальный диаметр окуляра, используемого в микроскопе, а также диаметр отверстия в тубусе, предназначенного для установки окуляра. В современных микроскопах используется несколько стандартных диаметров, в частности, 23 и 27 мм. На практике данный параметр необходим прежде всего в том случае, если планируется приобретать запасные или сменные окуляры к микроскопу, либо если «в хозяйстве» уже имеется окуляр, и нужно оценить его совместимость с данной моделью.
— Диоптрическая коррекция. Диапазон диоптрической коррекции, предусмотренный в окуляре. Такая коррекция применяется для того, чтобы близорукий или дальнозоркий человек мог смотреть в микроскоп без очков или контактных линз. В большинстве моделей с данной функцией диапазон коррекции составляет порядка 5 диоптрий в обе стороны; это позволяет использовать микроскоп при невысокой и средней степени близорукости/дальнозоркости.Предметный столик
Тип и/или размер предметного столика, установленного в микроскопе. Напомним, предметный столик — это поверхность, на которой размещается исследуемый препарат.
— Стационарный. Предметный столик, закреплённый неподвижно; наведение на резкость в таких микроскопах осуществляется за счёт движения вверх-вниз тубуса с объективом и окуляром. Такие системы просты и недороги, однако наводить резкость, глядя в постоянно движущийся окуляр, не очень удобно. Кроме того, для продвинутых биологических микроскопов (см. «Тип») с бинокулярами и тринокулярами (см. «Окуляр») данный вариант слабо подходит ещё и по некоторым конструктивным причинам. А вот абсолютное большинство стереомикроскопов оснащается именно стационарными столиками — это наиболее разумная конструкция с учётом специфики применения.
—
Подвижный. В микроскопах этого типа вся оптическая система неподвижно закреплена на штативе, а предметный столик может перемещаться вверх-вниз для наведения оптики на резкость. Такая конструкция встречается исключительно в биологических микроскопах (см. «Тип»). Она несколько сложнее и дороже, чем при неподвижном столике, но в то же время значительно удобнее: при наведении на резкость окуляр не двигается, что позволяет с комфортом подстраивать изображение, не отрываясь от наблюдения. Кроме того, именно подвижный столик является наиболее подходящим для продвинутых приборов с бинокулярами и тринокулярами (см. «Окуляр»), практически все подобные
...микроскопы имеют подобное оснащение.
Что касается размеров предметного столика, то они могут варьироваться от 75х75 мм до 240х200 мм и даже более. Здесь при выборе стоит учитывать планируемые размеры исследуемых препаратов.Препаратоводитель
Наличие препаратоводителя в конструкции предметного столика.
Препаратоводитель представляет собой приспособление для плавного перемещения препаратных стёкол под объективом микроскопа, а также фиксации условных координат отдельных участков препарата. За перемещение отвечают механизмы, позволяющие сдвигать стекло отдельно в продольном и поперечном направлении. Фиксацию координат обеспечивают специальные шкалы с нониусами, точность определения координат может составлять от 0,1 до 0,01 мм.
Данная функция встречается исключительно в биологических микроскопах (см. «Тип»). Её наличие может быть крайне важным для исследований, связанных с высокими кратностями увеличения. Без препаратоводителя стекло пришлось бы перемещать вручную, а поиск определённых участков был бы весьма непростой, а то и невозможной задачей.
Фокусировка
Виды фокусировки (наведения на резкость), предусмотренные в микроскопе. Фокусировка осуществляется за счёт изменения расстояния между рассматриваемым предметом и объективом; виды её могут быть такими:
— Грубая. Данный способ означает наличие одного поворотного регулятора, отвечающего за перемещение объектива или предметного столика. Достоинства подобной конструкции — простота и невысокая стоимость. В то же время фокусировка на высоких кратностях в таких микроскопах является довольно непростой задачей: поворачивать ручку настройки приходится буквально по долям миллиметра.
—
Грубая / точная. Фокусировка, осуществляемая двумя механическими регуляторами — для предварительного наведения на резкость и для окончательной тонкой подстройки. Такая настройка сама по себе удобнее, чем только грубая (см. выше), а на высоких кратностях она бывает просто незаменимой. С другой стороны, наличие дополнительного регулятора усложняет и удорожает конструкцию, поэтому встречается данный вариант преимущественно в полупрофессиональных и профессиональных микроскопах.
— Ручная. Способ, предполагающий отсутствие механизма фокусировки как такового. Наведение на резкость в таких приборах осуществляется за счёт того, что пользователь вручную перемещает объектив — например, сдвигая его вверх-вниз на вертикальном штативе и фиксируя в нужном положении зажимом, или наклоняя вперёд-назад на поворотном креплении. Данный вариант подходит только д
...ля моделей с невысокой кратностью, не требующих особой точности при фокусировке; он встречается преимущественно в цифровых микроскопах без собственного экрана (см. «Принцип работы»), а также портативных моделях (см. соответствующий пункт).Конденсор
Особенности конструкции конденсора, установленного в микроскопе.
Конденсор является частью системы подсветки в биологических микроскопах (см. «Тип»). Это оптическая система, особым образом обрабатывающая поступающий на препаратное стекло поток света. Для разных ситуаций могут потребоваться разные способы такой обработки; соответственно, в микроскопах могут применяться разные виды конденсоров. Тем не менее, самым популярным в наше время является простейший конденсор Аббе. Он обеспечивает концентрацию пучка света и равномерное его распределение по полю зрения. Изначально такое приспособление предназначено для исследований методом светлого поля, однако может применяться и для фазоконтрастных наблюдений. Конденсор Аббе мможет оснащаться ирисовой апертурной диафрагмой — с её помощью можно снизить яркость освещения — а также цветными светофильтрами.
Другие, более специфические виды конденсоров (например, фазовый или тёмного поля) обычно приобретаются по отдельности и в стандартное оснащение микроскопа включаются редко.
В характеристиках конденсора может указываться N.A. — размер апертуры (действующего отверстия) в миллиметрах, например, N.A.=1,2. Это довольно специфический параметр; достаточно сказать, что он подбирается производителем под комплектные объективы и на выбор микроскопа принципиально не влияет.
Диафрагма
Тип диафрагмы, установленной в микроскоп.
Диафрагма представляет собой приспособление, частично перекрывающее поток света от системы освещения микроскопа. Используется оно в основном для подстройки освещенности, а также для некоторых более специфических задач (в частности, изменения глубины резкости). При регулировке диафрагмы изменяется диаметр ее рабочего отверстия — и, соответственно, фактическое светопропускание; а разные типы диафрагм (
ирисовая или
дисковая) различаются по особенностям регулировки:
— Ирисовая. Название происходит от латинского слова, обозначающего радужную оболочку глаза — по схожему принципу и работают подобные приспособления. Ирисовая диафрагма состоит из набора лепестков специально подобранной формы (так называемых ламелей). При движении на закрытие эти лепестки сдвигаются от краев рабочего отверстия к центру, уменьшая его диаметр, при открытии — соответственно, движутся наружу. Ирисовые диафрагмы сложнее и дороже дисковых, однако имеют ряд важных преимуществ перед ними. Прежде всего — светопропускание во всем рабочем диапазоне таких приспособлений изменяется плавно, что позволяет подбирать настройки максимально точно. Управлять настройками можно, не прерывая наблюдений за препаратом; при этом ирисовые диафрагмы еще и максимально компактны и легки. Как следствие — именно данный вариант является наиболее популярным в микроскопах среднего класса и выше, а также нер
...едко встречается даже в более простых моделях.
— Дисковая. Другое название — револьверная. Диафрагма этого типа представляет собой диск с проделанными в нем отверстиями разных размеров; вращая диск, можно помещать в поле зрения микроскопа разные отверстия и, таким образом, менять светопропускание. Главными преимуществами подобных приспособлений являются простота конструкции, невысокая стоимость, надежность и простота в ремонте. С другой стороны, дисковые диафрагмы менее практичны и совершенны, нежели ирисовые — в частности, они весьма громоздки и не допускают плавной регулировки. В свете этого данный вариант применяется в основном среди микроскопов начального уровня, где продвинутые характеристики не требуется — а доступная цена, наоборот, имеет ключевое значение.Светофильтры
Наличие
светофильтров в комплекте поставки микроскопа.
Светофильтры устанавливаются в систему освещения; они могут быть сменными или встроенными (обычно на револьверном диске). В любом случае такие приспособления изменяют характеристики света, подстраивая его под особенности ситуации. Виды и назначение светофильтров могут быть разными, равно как их ассортимент в комплекте; вот некоторые из наиболее распространенных вариантов:
— Синий цветной. Полезен в тех случаях, когда для подсветки используется свет от лампы накаливания или «галогенки». Такой фильтр выравнивает цветовую температуру (баланс белого), делая оттенки цветов более холодными и обеспечивая естественную цветопередачу; это особенно важно для микрофотографии, так как для получения качественных снимков правильно выставленный баланс белого критически необходим.
— Желтый цветной. Своего рода противоположность синему: снижает цветовую температуру, придавая изображению более теплый оттенок. Иногда это также бывает полезно для регулировки баланса белого, однако у желтых фильтров есть еще одна важная область применения: они хорошо подходят для выявления дефектов на металлических поверхностях.
— Зеленый цветной. Ахроматные и планахроматные объективы, устанавливаемые в большинство современных микроскопов, лучше всего устраняют аберрации в зеленой части спектра. С учетом этого и применяются подобные фильтры: изображение, окрашенное в зеленый оттенок,
...имеет меньше всего видимых искажений. Кроме того, большинство объективов для фазово-контрастной микроскопии также наиболее эффективны в зеленой части спектра (хотя возможны и исключения).
— Матовый (диффузор). Фильтры белой окраски, которые не изменяют оттенок света, однако обеспечивают его дополнительное рассеивание. Это бывает полезно, в частности, при работе с объективами невысокой кратности.
— Нейтральный. Фильтры в различных оттенках серого цвета. Используются для того, чтобы снизить интенсивность освещения, не изменяя при этом других его характеристик. Подобные приспособления могут особенно пригодиться при фотосъемке — а именно если камера не имеет достаточно короткой выдержки. Отметим, что аналогичного эффекта можно добиться при помощи диафрагмы микроскопа, однако при съемке это не всегда оптимальный вариант. Так, сужение диафрагмы уменьшает поле зрения и увеличивает глубину резкости (последнее тоже не всегда желательно), тогда как светофильтры не влияют на эти параметры; к тому же в некоторых ситуациях даже самая узкая диафрагма может оказаться недостаточно «темной».
— Светофильтры для окрашенных препаратов. Улучшают видимость деталей, окрашенных в тот или иной цвет. Такие приспособления особенно популярны при исследованиях биологических препаратов: именно они чаще всего обрабатываются красителями, и они же наиболее подвержены выцветанию красителей, что затрудняет просмотр в обычном освещении. Отметим, что светофильтры этого типа, в отличие от описанных выше цветных, не окрашивают все изображение в определенный цвет, а только приглушают все остальные цвета, кроме своего «родного».
— Флуоресцентный. Фильтры, применяемые во флуоресцентной микроскопии. Делятся на два вида — возбуждающие (выделяют из общего спектра подсветки УФ-излучение для освещения препарата) и замыкающие (защищают глаза пользователя от ультрафиолета и в то же время пропускают флуоресцентное свечение препарата).