Казахстан
Каталог   /   Дом и ремонт   /   Автономное питание и энергообеспечение   /   Генераторы

Сравнение Kraftech KT 6500 W vs Forte FGD 6500EW

Добавить в сравнение
Kraftech KT 6500 W
Forte FGD 6500EW
Kraftech KT 6500 WForte FGD 6500EW
от 97 485 тг.
Товар устарел
от 478 725 тг.
Товар устарел
Топливобензиндизель
Выходное напряжение230 и 400 В230 B
Номинальная мощность2 кВт2 кВт
Максимальная мощность2.2 кВт2.5 кВт
Альтернаторсинхронный
Обмотка альтернаторамедная
Сварочный генератор
Род сварочного токапостоянный (DC)
Макс. ток сварки180 А
Макс. диаметр электрода4 мм
Двигатель
Тип ДВС4-тактный4-тактный
Модель двигателя168F
Объем двигателя196 см³389 см³
Мощность6.5 л.с.13 л.с.
Тип запускаручнойэлектростартер
Расход топлива (50% нагрузка)1.3 л/ч3 л/ч
Объем топливного бака15 л15 л
Индикатор уровня топлива
Охлаждение двигателявоздушноевоздушное
Подключение (розетки)
Общее кол-во розеток4 шт2 шт
Розетки 230 В2 шт на 16 А
Функции и возможности
Функции
 
вольтметр
авторегулятор напряжения (AVR)
вольтметр
Общее
Колеса
Уровень защитыIP 23
Уровень шума
68 дБ /на расстоянии 7 м/
75 дБ
Габариты650x450x450 мм760х550х650 мм
Вес38 кг108 кг
Дата добавления на E-Katalogмарт 2017сентябрь 2011

Топливо

Тип топлива, на котором работает двигатель электрогенератора.

Бензин. Один из основных типов топлива для двигателей внутреннего сгорания. Бензиновые генераторы обычно стоят дешевле дизельных, при прочих равных условиях, однако эксплуатация их обходится дороже за счёт более высокой цены на бензин; кроме того, они обычно имеют меньший ресурс, чем дизельные. Поэтому считается, что бензиновые генераторы хорошо подходят прежде всего в качестве резервного источника питания на случай отключения электричества.

Дизель. Дизельные генераторы обычно дороже бензиновых аналогов; с другой стороны, дизельное топливо дешевле бензина, поэтому повышенная стоимость вполне может окупиться при регулярном использовании. Кроме того, дизельные генераторы имеют более высокий ресурс и больший диапазон мощностей, чем бензиновые. Это позволяет применять их в качестве как резервных, так и основных источников питания, в том числе на довольно «энергоёмких» объектах.

Газ. Преимуществами генераторов на газу являются сравнительно низкий уровень шума и небольшое количество вредных выбросов. С другой стороны, использование газа как топлива связано с определенными сложностями: необходимо подключение к газовой магистрали или регулярная замена специальных баллонов, топливная система особо чувствительна к утечкам, и т. п. Поэтому подобных моделей выпускается сравнитель...но немного, и большинство из них представляет собой стационарные генераторы высокой мощности, у которых упомянутые недостатки перекрываются преимуществами.

Бензин/газ. Модели, способные использовать оба указанных типа топлива. Это даёт пользователю возможность выбрать вариант, оптимально соответствующий той или иной ситуации, а также снижает вероятность остаться без топлива в самый неподходящий момент; с другой стороны, и стоят подобные модели дороже однотопливных. Технические особенности бензина и газа подробно описаны выше.

Выходное напряжение

Номинальное напряжение на выходе генератора.

230 В. Стандартное напряжение обычной бытовой розетки. Широко применяется в быту, да и среди специализированного оборудования немало устройств на 230 В; исключением является лишь мощная техника (в основном от 4 – 5 кВт), для которой этого напряжения уже недостаточно. Именно на 230-вольтовые генераторы стоит обратить внимание тем, кто ищет устройство для резервного питания жилого помещения или небольшого офиса.

400 В. Генераторы, способные выдавать трехфазное питание с напряжением 400 В. Такое питание крайне редко применяется в быту, однако оно может потребоваться для тяжелого оборудования, специализированного инструмента и другой подобной нагрузки. Генераторы с выходным напряжением 400 В в целом мощнее, тяжелее, габаритнее, дороже и «прожорливее» 230-вольтовых. Специально искать подобный агрегат стоит лишь в тех случаях, если наличие трехфазного питания является принципиальным.

230 и 400 В. Модели комбинированного типа питания — большинство генераторов с выходным трехфазным напряжением 400 В оснащаются еще и однофазными розетками на 230 В. Это обеспечивает универсальность их применения как для резервного питания жилья или офиса, так и для выполнения более ресурсоемких задач (например, в строительстве и ремонте, для автономной работы высокомощных нагрузок и т.п.).

— 110 В. Генераторы с...розетками на 110 В (или 120 В для отдельных регионов). Подобное напряжение встречается в бытовых электросетях некоторых стран Северной и Центральной Америки, Японии, Саудовской Аравии, изредка — Великобритании. Подключать в такие розетки оборудование на 230 В не рекомендуется (если иное не прописано в техдокументации к конкретному электроприбору).

— DC (48 В). Модели с одним или несколькими DC-разъемами для питания внешних устройств постоянным током. Стандартное гнездо DC имеет круглую форму и штырек в центре, однако по глубине и диаметру его размеры могут отличаться. Напряжения, выводимые на DC-выход, бывают разными — в данном случае подразумевается 48 В.

Максимальная мощность

Максимальная мощность питания, которую способен обеспечить генератор.

Эта мощность несколько выше номинальной (см. выше), однако режим максимальной производительности может поддерживаться только в течение очень короткого времени — иначе возникает перегрузка. Поэтому практический смысл данной характеристики заключается в основном в том, чтобы описать эффективность генератора при работе с повышенными пусковыми токами.

Напомним, некоторые виды электроприборов в момент пуска потребляют в разы больший ток (и, соответственно, мощность), чем в штатном режиме; это характерно в основном для устройств с электродвигателями, таких как электроинструменты, холодильники и т. п. Однако повышенная мощность для такой техники нужна лишь кратковременно, нормальный режим работы восстанавливается буквально за несколько секунд. А оценить пусковые характеристики можно, умножив номинальную мощность на так называемый пусковой коэффициент. Для техники одного типа он более-менее одинаков (1,2 – 1,3 для большинства электроинструментов, 2 для микроволновки, 3,5 для кондиционера и т. п.); более подробные данные есть в специальных источниках.

В идеале максимальная мощность генератора должна быть не ниже, чем общая пиковая мощность подключенной нагрузки — то есть пусковая мощность оборудования с пусковым коэффициентом выше 1 плюс номинальная мощность всей остальной техники. Это максимально снизит вероятность перегрузок.

Альтернатор

Тип альтернатора, предусмотренного в агрегате.

Альтернатор представляет собой часть генератора, непосредственно отвечающую за выработку электричества. Такая система работает по принципу движения проводов (катушек) в магнитном поле, за счет чего и возникает электрический ток. Однако особенности работы альтернатора могут быть разными, на основании чего их и делят на виды: асинхронные, синхронные, инверторные и дуплексы. Вот основные особенности каждого варианта:

— Асинхронный. Простейший вариант альтернатора. Ротор (вращающаяся часть) в таких моделях при вращении несколько опережает движение магнитного поля, создаваемого статором (неподвижной частью) — отсюда и название. Практическими достоинствами асинхронных альтернаторов являются простота, невысокая стоимость, хорошая защищенность от внешних воздействий и нечувствительность к коротким замыканиям и длительным перегрузкам. Последнее делает их оптимальным выбором для питания сварочных аппаратов. В целом же асинхронные генераторы рассчитаны в основном на активную нагрузку: приборы освещения, компьютеры, электронагреватели и т. п. Для реактивной нагрузки (с катушками и конденсаторами) лучше применять синхронные агрегаты (см. ниже). Также стоит отметить, что в асинхронном альтернаторе напряжение и частота выходного тока напрямую зависят от скорости вращения; поэтому такие приборы о...собо требовательны к стабильности работы приводного двигателя.

— Синхронный. В альтернаторах этого типа вращение ротора и магнитного поля статора совпадают (в отличие от асинхронных моделей). Синхронные генераторы несколько сложнее по конструкции и дороже, они более чувствительны к коротким замыканиям и длительным перегрузкам. С другой стороны, такой агрегат отлично справляется как с активной, так и с реактивной нагрузкой: в течение короткого времени он способен выдавать ток, в разы превышающий номинальный, обеспечивая таким образом необходимую силу пускового тока для реактивной нагрузки. Кроме того, конструкция синхронных генераторов включает блок автоматической регулировки, выдающий на выход стабильное напряжение и способный до определенной степени компенсировать колебания оборотов приводного двигателя. Впрочем, по стабильности напряжения синхронные модели все же уступают инверторным (см. ниже).

— Инверторный. Синхронный генератор (см. выше), оснащенный дополнительным электронным блоком — инвертором. Этот блок обеспечивает двойное преобразование тока: из переменного в постоянный и затем опять в переменный. Стоят подобные устройства недешево, однако при этом они имеют целый ряд преимуществ. Во-первых, на выходе получается очень стабильный ток, практически без каких-либо скачков и флюктуаций. Во-вторых, генератор способен регулировать работу двигателя в зависимости от нагрузки: к примеру, если нагрузка составляет половину от выходной мощности, то и текущая мощность двигателя снижается вдвое; это дает значительную экономию топлива. В-третьих, инверторные модели получаются более легкими и компактными, чем традиционные генераторы, да и шумят они меньше. Именно такой генератор считается оптимальным выбором для нагрузки, чувствительной к качеству тока — такой, как аудиотехника или телевизор. В то же время агрегаты этого типа имеют сравнительно невысокую мощность и не рассчитаны на длительную работу либо высокие пусковые нагрузки, а потому используются они только как резервные источники питания для сравнительно маломощных систем энергоснабжения. Кроме того, при выборе инверторного генератора стоит уточнить форму выходного сигнала: далеко не все модели дают идеальную синусоиду — есть и агрегаты с трапециевидным импульсом, не подходящие для деликатной техники.

— Duplex. Тип альтернаторов, разработанный компанией Endress и применяющийся в основном в генераторах этого бренда (хотя встречаются устройства и от других производителей). По заявлению создателей, такой альтернатор сочетает в себе преимущества синхронных и асинхронных моделей. Так, с одной стороны, он способен переносить высокие пусковые токи без ущерба для питания остальных потребителей, а в конструкции обычно имеется авторегулятор напряжения на выходе; с другой — большинство таких генераторов можно применять и для питания сварочных аппаратов, а число высокочастотных гармоник на выходе у них получается очень низким. К недостаткам «дуплексов», помимо высокой стоимости, можно отнести необходимость настройки под конкретный набор подключаемых устройств.

Обмотка альтернатора

Медная. Медная обмотка характерна для генераторов продвинутого класса. Медный альтернатор отличается высокой проводимостью и слабым сопротивлением. Проводимость меди в 1,7 раза превышает проводимость алюминия, такая обмотка меньше греется, а соединения из этого металла стойко переносят температурные перепады и вибрационные нагрузки. Среди недостатков медной обмотки можно отметить разве что высокую стоимость альтернатора. В остальном же генераторы с медной обмоткой характеризуются высокой надежностью и долговечностью.

— Алюминиевая. Алюминиевая обмотка альтернатора характерна для генераторов бюджетного класса. Главными преимуществами алюминия являются легкий вес и невысокая цена, в остальном же такая обмотка, как правило, уступает медным аналогам. На поверхности алюминия создается оксидная пленка, она появляется везде, даже в местах контактной пайки. Оксидная пленка подначивает контакты и не дает внешней защитной оплетке надежно удерживать алюминиевые жилы.

Род сварочного тока

Род тока, выдаваемого сварочным генератором на электроды при сварке.

— Переменный (AC). Ток с постоянно меняющейся полярностью — как в обычных бытовых розетках; впрочем, при сварке обычно используют более высокие частоты — не 50 – 60 Гц, а порядка нескольких десятков килогерц. Ключевое преимущество переменного тока заключается в том, что он не имеет фиксированной полярности — проще говоря, перепутать «плюс» и «минус» при подключении электродов в принципе невозможно. С другой стороны, постоянная смена направления тока увеличивает количество брызг и снижает качество шва по сравнению с использованием постоянного тока. Как следствие, этот вариант встречается относительно редко и предназначается для сравнительно грубых работ.

— Постоянный (DC). Ток, имеющий фиксированную полярность и постоянно текущий в одном направлении, без его смены. Это позволяет добиться более аккуратного шва с меньшим количеством брызг, чем при переменном токе; как следствие, именно постоянный ток использует большинство современных сварочных генераторов. В то же время при работе с таким устройством нужно внимательно контролировать полярность подключения — причем в зависимости от особенностей работы может потребоваться как «прямая» («минус» к электроду), так и «обратная» («минус» к материалу) полярность. Кроме того, для постоянного тока требуются дополнительные схемы, что несколько ув...еличивает стоимость генераторов.

Макс. ток сварки

Максимальный ток, который сварочный генератор (см. выше) способен выдать на электроды при сварке.

Для разных материалов, разной толщины свариваемых деталей и разных видов самой сварки оптимальный сварочный ток тоже будет разным; есть специальные таблицы, позволяющие определить это значение. Общее же правило таково: максимальный ток генератора должен быть не ниже требуемого сварочного тока, иначе агрегат либо будет работать с перегрузкой, либо не сможет обеспечить необходимой эффективности сварки.

Макс. диаметр электрода

Максимальный диаметр сварочных электродов, с которыми может работать сварочный генератор (см. выше).

Чем толще обрабатываемый материал и чем шире шов — тем более толстые электроды нужно использовать для сварки; а более толстый электрод, как правило, предполагает и более высокие токи. Существуют специальные таблицы, позволяющие определить оптимальный диаметр электрода в зависимости от типа и толщины материала, вида сварки и т. п. Однако в любом случае толщина используемого электрода не должна быть выше максимально допустимой — это чревато перегрузками и поломками, а в лучшем случае генератор просто не сможет обеспечить нужной эффективности.

Модель двигателя

Название модели двигателя, установленного в генераторе. Зная это название, можно при необходимости найти подробные данные по двигателю и уточнить, насколько он удовлетворяет вашим требованиям. Кроме того, данные о модели могут понадобиться для некоторых специфических задач, включая обслуживание и ремонт.

Отметим, что современные генераторы нередко оснащаются фирменными двигателями от именитых производителей: Honda, John Deere, Mitsubishi, Volvo и т. п. Стоят такие двигатели дороже, чем аналогичные агрегаты от малоизвестных брендов, однако это компенсируется более высоким качеством и/или солидными условиями гарантии, а во многих случаях — еще и простотой поиска запчастей и дополнительной документации (вроде руководств по специальному обслуживанию и мелкому ремонту).