Тёмная версия
Казахстан
Каталог   /   Климат, отопление и водоснабжение   /   Отопление и котлы   /   Отопительные котлы

Сравнение Viessmann Vitopend 100-W A1JB 30 kW 29.9 кВт vs Viessmann Vitopend 100-WH1B366 30 kW 30 кВт

Добавить в сравнение
Viessmann Vitopend 100-W A1JB 30 kW 29.9 кВт
Viessmann Vitopend 100-WH1B366 30 kW 30 кВт
Viessmann Vitopend 100-W A1JB 30 kW 29.9 кВтViessmann Vitopend 100-WH1B366 30 kW 30 кВт
Сравнить цены 1
от 499 063 тг.
Товар устарел
Отзывы
0
1
0
3
ТОП продавцы
нет в продаже
Источник энергиигазгаз
Установканастенныйнастенный
Типдвухконтурный (отопление и нагрев)двухконтурный (отопление и нагрев)
Площадь отопления239 м²225 м²
Технические х-ки
Полезная мощность29.9 кВт30 кВт
Источник питания230 В230 В
Потребляемая мощность140 Вт87 Вт
Мин. t теплоносителя40 °С40 °С
Макс. t теплоносителя80 °С76 °С
Макс. давление в контуре отопления3 бар3 бар
Макс. давление в контуре ГВС10 бар10 бар
Потребительские х-ки
Мин. t горячей воды35 °С30 °С
Макс. t горячей воды57 °С57 °С
Производительность (Δt =25 °C)11.5 л/мин
Летний режим работы
Циркуляционный насос
Шина управленияOpenTherm
Программатор
Характеристики котла
КПД91 %90 %
Камера сгораниязакрытая (турбированный)открытая (дымоходный)
Диаметр дымохода60/100 мм60 мм
Номинальное давление газа на входе20 мбар
Макс. расход газа3.47 м³/ч3.53 м³/ч
Емкость расширительного бака6 л10 л
Давление расширительного бака1 бар0.8 бар
Теплообменникиз нержавеющей стали
Х-ки подключаемых труб
Подача воды в систему1/2"1/2"
Подача горячей воды1/2"1/2"
Подача газа3/4"3/4"
Вход в систему отопления3/4"3/4"
Возврат из системы отопления3/4"3/4"
Безопасность
Системы защиты
падение давления газа
перегрев воды
погасание пламени
отсутствие тяги
 
 
 
погасание пламени
 
отключение электроэнергии
Общее
Габариты (ВхШхГ)725x450x360 мм725x450x360 мм
Вес39 кг31 кг
Дата добавления на E-Katalogавгуст 2017август 2010

Площадь отопления

Весьма условный параметр, который слегка характеризует предназначение по размеру помещения. А в зависимости от высоты потолков, планировки, конструкции строения и оснащения реальные значения могут значительно отличаться. Тем не менее данный пункт представляет собой максимально рекомендуемую площадь помещения, которую способен эффективно обогреть котёл. Однако стоит учесть, что разные строения имеют разные теплоизоляционные свойства и современные постройки куда «теплее», чем 30-летние и тем более 50-летние дома. Соответственно данный пункт больше носит справочный характер и не позволяет в полной мере оценить реальную отапливаемую площадь. Существует формула, по которой можно вывести максимальную площадь обогрева, зная полезную мощность котла и климатические условия, в которых он будет применяться; подробнее об этом см. «Полезная мощность». В нашем же случае площадь отопления рассчитывается по формуле «мощность котла умноженная на 8», что ориентировочно равноценно использованию в домах, которым не один десяток лет.

Полезная мощность

Полезная мощность котла — а именно мощность нагрева, которую он обеспечивает на максимальном режиме.

От данного параметра напрямую зависит способность устройства обогреть помещение той или иной площади; по мощности можно приблизительно определить площадь обогрева, если этот параметр не указан в характеристиках. Самое общее правило гласит, что для жилого помещения с высотой потолков в 2,5 – 3 м на обогрев 1 м2 площади нужно не менее 100 Вт тепловой мощности. Существуют и более подробные методики расчета, учитывающие специфические факторы: климатическую зону, теплоприток снаружи, конструктивные особенности системы отопления и т. п.; они подробно описаны в специальных источниках. Также отметим, что в двухконтурных котлах (см. «Тип») часть вырабатываемого тепла идет на нагрев воды для ГВС; это нужно учитывать при оценке полезной мощности.

Считается, что котлы мощностью более 30 кВт необходимо устанавливать в отдельных помещениях (котельных).

Потребляемая мощность

Максимальная электрическая мощность, потребляемая котлом при работе. У неэлектрических моделей (см. «Источник энергии») эта мощность обычно невысока, так как требуется в основном для управляющих схем, и на нее можно не обращать особого внимания. Касательно электрических котлов стоит отметить, что потребляемая мощность в них чаще всего несколько выше полезной, т. к. часть энергии неизбежно рассеивается и не используется на нагрев. Соответственно, по соотношению полезной и потребляемой мощности можно оценить КПД такого котла.

Макс. t теплоносителя

Максимальная рабочая температура теплоносителя в системе котла при работе в режиме отопления.

Мин. t горячей воды

Минимальная температура горячей воды, выдаваемой двухконтурным котлом в режиме горячего водоснабжения (ГВС). Для сравнения отметим, что вода начинает восприниматься как теплая, начиная с 40 °С, а в централизованных системах горячего водоснабжения температура горячей воды обычно составляет порядка 60 °С (и не должна превышать 75 °С). В то же время в некоторых котлах минимальная температура нагрева может составлять всего 10 °С, а то и 5 °С. Подобный режим работы используется для защиты труб от промерзания в холодное время года: циркуляция воды с плюсовой температурой предотвращает образование внутри льда и повреждение контуров.

Также стоит иметь в виду, что при нагреве до данной температуры разница температур («Δt») может быть разной — в зависимости от исходной температуры холодной воды. А от Δt прямо зависит производительность котла в режиме ГВС; подробнее о производительности см. ниже.

Производительность (Δt =25 °C)

Производительность двухконтурного котла в режиме горячего водоснабжения при нагреве воды на 25 °С сверх изначальной температуры.

Производительность — это наибольшее количество горячей воды, которое агрегат может выдать за минуту. Она зависит не только от мощности нагревателя как такового, но и от того, как сильно нужно греть воду: чем выше разница температур (Δt — «дельта тэ») между холодной и нагретой водой — тем больше энергии требуется для нагрева и тем меньше объемы воды, с которыми в таком режим может справиться котел. Поэтому производительность двухконтурных котлов обязательно указывается для определенных вариантов Δt — а именно 25 °С, 30 °С и/или 50 °С. А выбирать по данному показателю стоит с учетом исходной температуры воды и с учетом того, какая потребность в горячей воде имеется в месте установки котла (сколько точек водоразбора, какие требования к температуре и т. п.); подробные рекомендации по этому поводу можно найти в специальных источниках.

Также напомним, что вода начинает ощущаться человеком как теплая где-то с 40 °С, как горячая — где-то с 50 °С, а температура горячей воды в системах центрального водоснабжения (по официальным нормам) составляет не ниже 60 °С. Таким образом, чтобы котел работал в режиме Δt=25 °C и выдавал хотя бы теплую воду в 40 °С, изначальная температура холодной воды должна составлять не менее 15 °С (15+25=40 °С). Это довольно высокое значение — к примеру, в централизованном водопроводе холодная вода достигает 15 °С...разве что летом, когда трубы водоснабжения заметно прогреваются; то же касается воды, подаваемой из скважин. Так что данная производительность — значение весьма условное, на практике котел не так часто работает с разницей температур в 25 °С. Тем не менее, данные для Δt=25°C все равно часто приводят в характеристиках — в том числе в рекламных целях, поскольку именно в таком режиме цифры производительности получаются наиболее высокими. Кроме того, эта информация может пригодиться, если котел используется как предварительный водонагреватель, а догрев до рабочей температуры обеспечивает другое устройство — например, электрический бойлер или проточный водонагреватель.

Шина управления

Шина управления, с которой совместим котел.

Шина управления представляет собой канал связи, по которому управляющие и управляемые устройства могут обмениваться данными. Поддержка подобного канала заметно упрощает подключение терморегуляторов и другой управляющей автоматики — достаточно, чтобы такие устройства были совместимы с той же шиной, что и котел. Кроме того, многие виды шин позволяют создавать весьма обширные системы контроля и управления и без проблем интегрировать в них разные устройства, в том числе отопительные котлы.

В современной отопительной технике наибольшей популярностью пользуются шины OpenTherm, eBus, Bus BridgeNet и EMS. Вот их ключевые особенности:

— OpenTherm. Достаточно простой стандарт со скромным функционалом: допускает только прямое соединение управляющего и управляемого устройства, не рассчитан на создание обширных систем. С другой стороны, эта шина имеет достаточно продвинутые возможности по управлению отопительными приборами: в частности, она позволяет регулировать температуру не просто включением/отключением котла, а изменением мощности газовой горелки. Подобный режим работы способствует экономии топлива/энергии, а также снижает износ и увеличивает ресурс нагревателя; а во многих случаях системы из двух устройств (котла и терморегулятора) вполне достаточно для эффективного управле...ния отоплением. При этом стандарт OpenTherm прост и недорог в реализации, благодаря чему в современных котлах он чрезвычайно популярен. По ряду причин применяется он в основном в моделях на газу.

— eBUS. Шина управления, имеющая довольно впечатляющие практические возможности. Позволяет объединять в одной системе до 25 управляющих и 228 управляемых устройств, с дальностью передачи данных между отдельными компонентами до 1 км. При этом eBUS является открытым стандартом, его реализация (по крайней мере, в рамках основных функций) бесплатно доступна для всех желающих. И хотя в наше время поддержку eBUS можно встретить в основном в технике Protherm и Vaillant, однако в целом в котлах это второй по популярности тип шины управления, после OpenTherm. Такое отставание обусловлено в основном несколько большей стоимостью, притом что продвинутые возможности eBUS реально необходимы не так часто.

— Bus BridgeNet. Фирменная разработка Hotpoint-Ariston, применяемая исключительно в котлах этого бренда. Одним из преимуществ заявлена высокая степень автоматизации: от пользователя требуется лишь задать параметры температуры (причем для разных зон можно выбрать свои варианты) и, при желании, программу на неделю, остальные необходимые расчеты и регулировки осуществит система. Впрочем, такие возможности доступны только в специальных управляющих устройствах вроде терморегуляторов; в котлах же поддержка Bus BridgeNet обычно означает лишь совместимость с подобной автоматикой.

— EMS. Шина управления, используемая в основном в оборудовании Bosch и Buderus. В целом отличается широким функционалом, высокой степенью автоматизации и возможностью создания обширных систем управления. Однако стоит учитывать, что в наше время можно встретить как оригинальную EMS, так и модифицированную EMS Plus, и эти стандарты изначально не совместимы между собой (хотя поддержка их обоих вполне может предусматриваться в отдельных устройствах). Так что конкретную версию шины EMS стоит уточнять отдельно; здесь отметим, что в технике Bosch встречается преимущественно оригинальный вариант, а в устройствах Buderus — EMS Plus (хотя и там, и там возможны исключения).

Программатор

Наличие программатора в конструкции котла.

Программатором называют программируемый термостат — устройство, позволяющее не просто поддерживать температуру, но еще и программировать работу котла на определенный период времени. Простейшие программаторы охватывают сутки, более продвинутые позволяют задавать режим работы по отдельным дням работы. В любом случае данная функция обеспечивает дополнительное удобство и устраняет необходимость постоянно регулировать работу котла вручную. С другой стороны, наличие программатора сказывается на стоимости.

КПД

Коэффициент полезного действия котла — основной показатель, характеризующий эффективность его работы.

Для электрических моделей (см. «Источник энергии») этот показатель высчитывают как соотношение полезной мощности к потребляемой; в таких моделях не редкостью являются показатели в 98 – 99 %. Для котлов на сгораемом топливе КПД — это соотношение количества тепла, непосредственно передаваемого теплоносителю, к общему количеству тепла, выделяемому при сгорании. В таких устройствах эффективность ниже, чем в электрических, для них хорошим считается показатель более чем в 90 %. Исключение представляют собой конденсационные котлы (см. соответствующий пункт), в которых КПД может быть даже выше 100 %. Никакого нарушения законов физики здесь не происходит, это своего рода рекламная хитрость: при подсчетах КПД используется не совсем корректная методика, не учитывающая энергии, затраченной на образование водяного пара. Тем не менее, формально все верно: котел выдает на теплоноситель больше тепловой энергии, чем выделяется при сгорании топлива, т. к. к энергии сгорания добавляется энергия конденсации.
Viessmann Vitopend 100-W A1JB 30 kW часто сравнивают