Кратность увеличения
Кратность увеличения изображения, обеспечиваемая подзорной трубой. Грубо говоря, данный параметр описывает, во сколько раз видимый в окуляре трубы объект будет больше, чем при рассматривании его с того же расстояния невооружённым глазом.
Кратность — первое число (числа) в цифровой маркировке оптических приборов: к примеру, обозначение 25-75х50 соответствует кратности от 25х до 75х. Отметим, что большинство современных подзорных труб имеет именно переменную (настраиваемую) кратность. Это позволяет выбирать режим работы в зависимости ситуации: для поиска нужного предмета удобнее снизить степень увеличения, обеспечив обширное поле зрения, а найдя его — повысить кратность и рассмотреть подробно. Правда, в некоторых моделях для изменения кратности нужно заменить окуляр (см. «Сменный окуляр»).
Высокая кратность, с одной стороны, делает трубу «дальнобойной» и позволяет с лёгкостью рассматривать небольшие предметы на значительных расстояниях. С другой стороны, угол зрения при этом уменьшается, что затрудняет наблюдение за движущимися предметами и даже наведение оптики на цель. Кроме того, при увеличении кратности уменьшается ещё и диаметр выходного зрачка (см. ниже) и светосила трубы; компенсировать этот момент можно за счёт увеличения объектива, однако это соответствующим образом сказывается на цене. Так что специально искать мощную оптику с высокой степенью увеличения имеет смысл только тогда, когда такие возможности принципиально важны.
Поле зрения на расстоянии 1 км
Поле зрения подзорной трубы при расстоянии до рассматриваемых объектов в 1 км, т.н. «линейное поле зрения». По сути, это ширина (диаметр) пространства, попадающего в поле зрения при наблюдении с расстояния в 1 км.
Данный параметр широко используется в характеристиках подзорных труб наряду с угловым полем зрения (см. ниже): данные о линейном поле зрения более наглядны и приближены к практике, они позволяют оценить возможности подзорной трубы, не прибегая к специальным вычислениям.
Для моделей переменной кратности (а таких большинство) линейное поле зрения указывается в виде двух чисел — для минимального и для максимального увеличения.
Угловое поле зрения
Угол обзора, обеспечиваемый подзорной трубой.
Если провести две линии от центра объектива к двум противоположным точкам по краям поля зрения трубы — угол между этими линиями и будет соответствовать угловому полю зрения. Соответственно, чем больше угол — тем шире поле зрения; однако отдельные предметы в нём будут выглядеть более мелкими. И наоборот, повышение кратности увеличения неизбежно связано с уменьшением угла обзора. А поскольку большинство современных подзорных труб имеют переменную кратность увеличения, то и угловое поле зрения является изменяемым, и в характеристиках данный показатель указывается в виде двух чисел — для минимального и для максимального увеличения.
Мин. дистанция фокусировки
Наименьшее расстояние до рассматриваемого предмета, при котором подзорная труба способна на нём полноценно сфокусироваться — то есть минимальное расстояние, на котором изображение в окуляре будет оставаться чётким.
Подзорные трубы изначально созданы для рассматривания удалённых объектов, поэтому при слишком малой дистанции с наведением на резкость могут возникнуть проблемы. В свете этого производители и указывают в характеристиках данный параметр. Впрочем, даже в самых мощных и «дальнобойных» моделях минимальная дистанция фокусировки составляет порядка 25 м — на таком расстоянии нередко бывает достаточно и невооружённого глаза. Поэтому на данный параметр стоит обращать внимание лишь в тех случаях, когда возможность нормально работать вблизи имеет принципиальное значение — например, если труба используется на стрельбище, где расстояние до мишеней может быть разным, в т.ч. довольно небольшим.
Диаметр объектива
Диаметр объектива — передней линзы подзорной трубы. Также для этой характеристики используется термин «апертура».
Диаметр объектива — одна из важнейших характеристик оптической системы: от апертуры напрямую зависит количество света, попадающее в объектив, и, соответственно, качество изображения (особенно при слабой освещённости). С точки зрения оптических характеристик однозначно можно сказать, что чем
крупнее объектив — тем лучше, особенно при высокой кратности увеличения (подробнее см. «Диаметр выходного зрачка»). С другой стороны, большие линзы заметно влияют на размеры, вес, а главное — стоимость подзорных труб. Поэтому производители обычно выбирают размер объектива с учётом кратности, ценовой категории и специфики применения подзорной трубы — тем более что при малых кратностях и хорошем освещении даже сравнительно небольшая апертура вполне может обеспечить качественное изображение. Подробнее об этих закономерностях см. «Диаметр выходного зрачка». Кроме того, стоит отметить, что на особенности «картинки» влияют не только математические характеристики оптики, но и общее качество её компонентов.
Диаметр выходного зрачка
Диаметр выходного зрачка подзорной трубы.
Выходной зрачок — это проекция «видимого» трубой изображения, возникающая сразу за окуляром. Человек видит изображение в подзорной трубе именно за счёт того, что выходной зрачок проецируется на глаз.
Диаметр выходного зрачка соответствует размеру объектива, поделённому на кратность (и о том, и о другом см. выше). К примеру, для трубы с апертурой в 50 мм, работающей на кратности 25х, этот размер будет составлять 50/25 = 2 мм. При этом считается, что для обеспечения максимально яркого и комфортного изображения выходной зрачок должен быть не меньше, чем зрачок глаза наблюдателя — а это 2 – 3 мм на свету и до 8 мм (у пожилых людей — до 5 – 6 мм) в сумерках. Именно этим обусловлено то, что для комфортной работы на высоких кратностях и/или в условиях слабого освещения подзорная труба должна иметь довольно крупный объектив. Впрочем, большинство подобных оптических приборов рассчитаны на дневное применение, а для этого достаточно выходного зрачка размером от 1,33 мм.
Для большинства современных подзорных труб диаметр выходного зрачка указывается двумя числами — для минимального и для максимального увеличения.
Сменный окуляр
Возможность снять окуляр подзорной трубы и заменить его на другой.
Окуляр — одна из ключевых деталей оптического прибора, определяющая не только комфорт для пользователя, но и вполне практические рабочие моменты. Так, от характеристик этой детали зависит кратность увеличения (см. выше) — вплоть до того, что в некоторых подзорных трубах изменение кратности осуществляется исключительно за счёт смены окуляров. Некоторые допускают установку разных окуляров — с фиксированной либо с переменной кратностью. Кроме того, окуляры могут различаться также по выносу выходного зрачка, диапазону диоптрической коррекции (о том и другом см. выше) и другим практическим характеристикам.
Отметим, что данная особенность характерна в основном для моделей премиум-уровня. При этом в комплекте обычно поставляются далеко не все доступные для данной модели окуляры. При выборе же «глазка» отдельно стоит учитывать, что многие производители выпускают окуляры не для всех труб своей марки, а для отдельных серий или даже единичных моделей; так что к вопросу совместимости нужно подходить очень внимательно.
Тип просветления
Тип просветления оптики, предусмотренный в подзорной трубе.
Просветлением называют специальное покрытие, наносимое на поверхность линзы. Предназначено такое покрытие для того, чтобы снизить потери света на границе воздух-стекло. Такие потери возникают неизбежно из-за отражения света, а просветляющее покрытие «разворачивает» отражённые лучи обратно, повышая таким образом светопропускание линзы. Кроме того, данная функция снижает количество бликов на видимых в подзорную трубу предметах.
Типы просветления могут быть такими:
—
Однослойное. Данная маркировка означает, что на одной или нескольких поверхностях линз (но не на всех) нанесено однослойное антиотражающее покрытие. Подобное обходится недорого и может использоваться даже в оптических приборах начального уровня. С другой стороны, оно отсеивает определённый спектр света, из-за чего искажается цветопередача в видимом изображении — иногда довольно заметно. К тому же в данном случае на некоторых поверхностях линз покрытие вообще отсутствует, что неизбежно приводит к появлению бликов в поле зрения. Таким образом, однослойное просветление является простейшей разновидностью и применяется крайне редко, в основном в бюджетных моделях.
—
Полное однослойное. Разновидность описанного выше однослойного просветления, при котором антиотражающее покрытие имеется на всех поверхностях линз (на каждой границе «воздух – стекло
...»). Хотя для данного варианта тоже характерно искажение цветов, он лишён другого, самого ключевого недостатка «неполных» просветлений — бликов в поле зрения. А упомянутое искажение цветопередачи чаще всего не критично. При всём этом и обходится полное однослойное просветление сравнительно недорого, благодаря чему оно весьма популярно в подзорных трубах начального и начально-среднего уровней.
— Многослойное. Тип просветления, при котором многослойное отражающее покрытие наносится на одну или несколько поверхностей линз (но не на все). Преимуществом такого покрытия перед однослойным является то, что оно равномерно пропускает практически весь видимый спектр и не создаёт заметных искажений цвета. Отсутствие же покрытия на отдельных поверхностях снижает стоимость прибора (по сравнению с полным многослойным просветлением), однако полностью избавиться от бликов в такой системе невозможно.
— Полное многослойное. Наиболее продвинутый и эффективный из современных типов просветления: многослойное покрытие нанесено на все поверхности линз. Таким образом достигается высокая яркость и чёткость «картинки», с естественной цветопередачей и отсутствием бликов. Недостаток данного варианта классический — высокая стоимость; соответственно, полное многослойное просветление характерно в основном для высококлассных подзорных труб.Тип призм
Тип призм, используемых в конструкции подзорной трубы (если призмы вообще в ней предусмотрены).
—
Roof. Призма типа Roof не изменяет направления света, попадающего в неё — луч света проходит несколько внутренних отражений и выходит в том же направлении и на том же уровне, на каком вошёл. Такие призмы применяются в моделях с прямым расположением окуляра; они позволяют увеличить фокусное расстояние подзорной трубы и добиться высокой кратности без значительного увеличения длины самого прибора.
—
Porro. Классическая призма этого типа обеспечивает «разворот» входящего в неё света на 180°; из-за этого Porro используются как минимум попарно. Они применяются почти во всех подзорных трубах с окулярами, расположенными под 45°, а также в «прямых» моделях, в которых окуляр смещён относительно оптической оси объектива (обычно кверху). О преимуществах первого варианта см. «Расположения окуляра»; а размещение окуляра выше объектива уменьшает длину подзорной трубы, к тому же в некоторых ситуациях такая компоновка оказывается наиболее удобной. Как и Roof, призмы Porro обеспечивают увеличение фокусного расстояния; при этом считаются, что они дают более широкое поле зрения и хорошую глубину изображения. Недостаток данного варианта — увеличение габаритов трубы в высоту.