Тёмная версия
Казахстан
Каталог   /   Компьютерная техника   /   Сетевое оборудование   /   Wi-Fi оборудование

Сравнение TP-LINK Archer C5400X vs TP-LINK Archer AX6000

Добавить в сравнение
TP-LINK Archer C5400X
TP-LINK Archer AX6000
TP-LINK Archer C5400XTP-LINK Archer AX6000
Сравнить цены 3Сравнить цены 10
ТОП продавцы
Главное
В роутере стоит 1,8 ГГц 64-битный 4-ядерный процессор, 3 сопроцессора и 1 ГБ оперативной памяти. Благодаря модулю динамической оптимизации задержки в онлайн-играх сводятся к минимуму. Технология RangeBoost обеспечивает широкое покрытие сигнала.
Технология Airtime Fairness позволяет быстро и точно отвечать на запросы клиентских устройств. Технология Beamforming определяет месторасположение клиентского устройства и оптимизирует беспроводный сигнал в его направлении.
Для обеспечения высокой производительности используется четырехъядерный процессор с частотой 1.8 ГГц и 2 сопроцессора, что минимизирует задержки. Функция Band Steering переводит подключенных клиентов на менее зашумленную частоту.
Тип устройстваигровой роутерроутер
Вход данных (WAN-port)
Ethernet (RJ45)
Ethernet (RJ45)
Беспроводное подключение Wi-Fi
Стандарты Wi-Fi
Wi-Fi 3 (802.11g)
Wi-Fi 4 (802.11n)
Wi-Fi 5 (802.11ac)
 
Wi-Fi 3 (802.11g)
Wi-Fi 4 (802.11n)
Wi-Fi 5 (802.11ac)
Wi-Fi 6 (802.11ax)
Частотный диапазон
2.4 ГГц
5 ГГц
2.4 ГГц
5 ГГц
Диапазоны работытрехканальный (2.4 ГГц и 5 ГГц в 2 канала)двухдиапазонный (2.4 ГГц и 5 ГГц)
Макс. скорость при 2.4 ГГц1000 Мбит/с1148 Мбит/с
Макс. скорость при 5 ГГц2167 Мбит/с4804 Мбит/с
Полоса пропускания160 МГц
Подключение и LAN
WAN
1 порт
1 Гбит/с
1 порт
2.5 Гбит/с
LAN
8 портов
1 Гбит/с
8 портов
1 Гбит/с
Кол-во USB 3.2 gen12 шт2 шт
Антенна и передатчик
Wi-Fi антенн8 шт8 шт
Тип антеннвнешняявнешняя
MU-MIMO
Съемная антенна
Коэффициент усиления5 dBi3 dBi
Антенн на 2.4 ГГц4 шт
Антенн на 5 ГГц4 шт
Мощность передатчика30 dBm23 dBm
Мощность сигнала 2.4 ГГц20 dBm20 dBm
Мощность сигнала 5 ГГц30 dBm23 dBm
Аппаратная часть
ПроцессорBroadcom BCM4908
Кол-во ядер44
Тактовая частота1.8 ГГц1.8 ГГц
Оперативная память1 ГБ1 ГБ
Flash-память128 МБ
Функции
Функции и возможности
 
NAT
Beamforming
сетевой экран (Firewall)
CLI (Telnet)
Link Aggregation
NAT
Beamforming
сетевой экран (Firewall)
 
Дополнительно
DHCP-сервер
FTP-сервер
файл-сервер
медиа сервер (DLNA)
принт-сервер
поддержка VPN
поддержка DDNS
поддержка DMZ
DHCP-сервер
FTP-сервер
файл-сервер
медиа сервер (DLNA)
 
поддержка VPN
поддержка DDNS
поддержка DMZ
Безопасность
Стандарты безопасности
WPA
WEP
WPA2
 
802.1x
WPA
WEP
WPA2
WPA3
802.1x
Общее
Рабочая температура0 °C ~ +40 °C
Габариты241x241x55 мм261x261x60 мм
Вес1500 г
Цвет корпуса
Дата добавления на E-Katalogавгуст 2019май 2019

Тип устройства

Общий тип устройства. В наше время, помимо привычных многим роутеров (как обычных, так и игровых), в продаже можно встретить ADSL роутеры, точки доступа (в том числе направленные), MESH-системы, Wi-Fi адаптеры, Wi-Fi усилители и даже терминалі спутникового интернета. Вот подробное описание этих видов оборудования:

— Роутер. Устройства, известные многим как самое популярное средство беспроводного доступа в Интернет. Впрочем, этим применение подобной электроники не ограничивается — она может использоваться также для создания локальных сетей и с некоторыми другими, более специфическими целями.С технической стороны роутер — это точка доступа в беспроводную сеть, поддерживающая режим NAT; подробнее об этом режиме см. «Функции и возможности», здесь же отметим, что именно благодаря NAT возможен доступ в Интернет сразу с нескольких компьютеров/гаджетов, работающих через одну учетную запись провайдера.

— Игровой роутер. Разновидность описанных выше роутеров, оптимизированная для применения в онлайн-играх. Особенностями таких устройств являются поддержка новейших стандартов связи, высокая скорость соединения с минимумом лагов, а также наличие специальных инструментов...и функций (приоритет игрового трафика, ускорители соединения, интеграция с игровыми сервисами или даже определенными онлайн-играми, и т. п.). Конкретный функционал игрового роутера может быть разным, однако если вы стремитесь к максимальной скорости и комфорту в сетевых играх — имеет смысл выбирать устройство именно из данной категории.

— ADSL модем/роутер. Беспроводные роутеры (см. выше), которые обеспечивают выход в Интернет за счет технологии ADSL. Ключевое преимущество этой технологии заключается в том, что она позволяет использовать существующие телефонные сети и не возиться с прокладкой проводов; при этом Интернет и телефонная связь работают независимо и не мешают друг другу. С другой стороны, такое подключение уступает проводному Ethernet по скорости и функционалу (подробнее см. «Вход данных (WAN-port)»); поэтому в наше время ADSL постепенно «сходит со сцены», и оборудования под эту технологию на рынке немного.

— Точка доступа. Устройства, предназначенные в основном для использования в роли своеобразных «переходников» между проводными сетями и беспроводными устройствами, а также для связи между собой отдельных сегментов сети по беспроводному каналу. Принципиальное отличие таких устройств от роутеров (см. выше) заключается в отсутствии функции NAT (см. «Функции и возможности») — таким образом, каждое подключенное к точке доступа беспроводное устройство передает в сеть собственный IP-адрес. Характерный пример сети на основе такого оборудования — общий маршрутизатор для подключения к Интернету плюс несколько точек доступа, размещенных в ключевых местах и подключенных к маршрутизатору проводным способом.

— Направленная точка доступа. Разновидность описанных выше точек доступа, у которых зона покрытия имеет четкую направленность. Проще говоря, сигнал от такого устройства расходится не равномерно во все стороны, а в определенном направлении, в виде луча или сектора. Такое оборудование имеет две основных сферы применения. Первая — это ситуации, когда точку доступа нужно установить не в центре, а на краю перекрываемой зоны — например, в углу помещения. В таком случае направленная конструкция позволяет сосредоточить почти всю мощность передатчика в рабочей зоне, не тратя ее на «ненужные» направления. Второй вариант применения — беспроводная связь на больших расстояниях, например, между сетями в разных зданиях в режиме моста (см. «Функции и возможности»); в некоторых направленных точках доступа дальность связи достигает 10 км. Разумеется, для такой связи устройство с другой стороны беспроводного канала тоже должно иметь соответствующую дальность, поэтому проще всего в таких случаях использовать две точки доступа с одинаковыми характеристиками.

— MESH-система. Оборудование для построения беспроводных сетей в формате MESH. Идея этого формата заключается в использовании большого количества компактных и относительно маломощных беспроводных приемопередатчиков, способных согласованно взаимодействовать между собой. Таким способом можно перекрыть значительную территорию (вплоть до небольшого города), обеспечив надежное подключение в любой точке зоны покрытия. Происходит это следующим образом: ноутбук, смартфон или другой Wi-Fi гаджет взаимодействует с ближайшим узлом MESH-сети, далее данные передаются к основному роутеру или точке доступа беспроводным способом, по цепочке между узлами. При этом используется так называемая динамическая маршрутизация: сеть сама определяет оптимальный путь передачи данных и автоматически изменяет этот путь при перемещении пользователя между отдельными узлами.
Собственно, динамическая маршрутизация и является ключевым отличием MESH-устройств от более традиционных Wi-Fi усилителей. При этом работа осуществляет в «бесшовном» формате: при переключении с одного узла на другой связь не теряется и сетевые функции, требующие стабильного подключения (загрузки, просмотр видео, онлайн-игры, сессии авторизации) не прерываются. Иными словами, пользователь вообще не замечает переключений между отдельными узлами. Кроме того, такой формат работы позволяет сохранить стабильную скорость подключения (тогда как использование традиционных усилителей, особенно в виде цепочек, заметно снижает скорость). Таким образом, MESH-сеть может стать отличным решением для ситуаций, где нужен набор из нескольких усилителей Wi-Fi — начиная от частного дома на 2-3 этажа и заканчивая офисными и промышленными комплексами, а то и городскими районами. При этом оборудование для таких сетей может продаваться комплектами из нескольких единиц (до 8); подробнее см. «В комплекте».

— Wi-Fi адаптер. Адаптеры для подключения к Wi-Fi сетям, предназначенные для настольных ПК и другой техники, изначально не имеющей встроенных Wi-Fi модулей. Такое оборудование может быть как внешним, так и внутренним — подробнее см. «Интерфейсы (для адаптеров)». Здесь же отметим, что покупка Wi-Fi адаптера может стать неплохой альтернативой проводному подключению — особенно если роутер расположен далеко и тянуть провод было бы неудобно.

— Усилитель Wi-Fi. Устройства, предназначенные для усиления Wi-Fi сигнала от существующего роутера или точки доступа. Позволяют расширить зону покрытия, избавиться от «мертвых зон», а также и улучшить общее качество связи и сделать сигнал более стабильным. От MESH-оборудования (см. выше), имеющего схожее назначение, данный тип устройств отличается отсутствием динамической маршрутизации (Wi-Fi усилители рассчитаны на работу напрямую с роутером, в крайнем случае по фиксированной цепочке), а также невозможностью бесшовной работы (усилитель виден как отдельная сеть — подробнее см. «Функции и возможности — Режим репитера»). Кроме того, подключение через такое устройство может заметно снизить скорость. С другой стороны, Wi-Fi усилители обходятся значительно дешевле, чем узлы MESH-систем. Так что именно данный тип оборудования может оказаться оптимальным вариантом для несложного бытового применения, когда нужно лишь слегка расширить имеющееся покрытие и нет нужды строить обширную сеть с множеством равноценных точек подключения.

Спутниковый интернет (Starlink). Терминалы для доступа ко Всемирной паутине через спутниковую связь. Инфраструктура подобных систем обычно состоит из низкоорбитальных спутников в космосе, сети базовых станций на земле, непосредственно клиентских терминалов для приема сигналов и раздачи интернета. Монополистом в этой сфере является компания Илона Маска SpaceX с ее терминалами Starlink.

С внедрением спутниковых систем в массовый обиход появилась возможность обеспечения высокоскоростного доступа к интернету в тех местах, где раньше это было невозможно из-за отсутствия или слабого развития традиционных способов передачи данных. Вместе с тем такой интернет придется кстати при регулярных перебоях с энергоснабжением и вдали от электрической цивилизации. Главное — это запитать клиентский терминал. Из минусов технологии отмечается дороговизна оборудования и высокая абонплата за пользование услугами спутникового интернета (по сравнению с традиционным кабельным подключением или использованием мобильного доступа к глобальной сети).

Стандарты Wi-Fi

Стандарты Wi-Fi, поддерживаемые оборудованием. В наше время, помимо современных стандартов Wi-Fi 4 (802.11n), Wi-Fi 5 (802.11ac), Wi-Fi 6 (802.11ax) (его разновидность Wi-Fi 6E), Wi-Fi 7 (802.11be) и WiGig (802.11ad), можно встретить также поддержку более ранних версий — Wi-Fi 3 (802.11g) и даже Wi-Fi 1 (802.11b). Вот более подробное описание каждой из этих версий:

— Wi-Fi 3 (802.11g). Устаревший стандарт, как и канувший в лету Wi-Fi 1 (802.11b). Широко применялся до появления Wi-Fi 4, в наше время используется в основном как дополнение к более новым версиям — в частности, для того, чтоб обеспечить совместимость с устаревшим и бюджетным оборудованием. Работает на частоте 2,4 ГГц, максимальная скорость обмена данными — 54 Мбит/с.

— Wi-Fi 4 (802.11n). Первый из общераспространенных стандартов, поддерживающий частоту 5 ГГц; может работать в этом диапазоне либо в классическом 2,4 ГГц. Стоит подчеркнуть, что некоторые модели Wi-Fi оборудования под этот стандарт используют только 5 ГГц, из-за чего несовместимы с более ранними версиями Wi-Fi. Максимальная скорость у Wi-Fi 4 — 600 Мбит/с; в современных беспроводных устройствах этот стандарт весьма популярен, лишь недавно его стал теснить на этой позиции Wi-Fi 5.

— Wi-Fi...5 (802.11ac). Наследник Wi-Fi 4, окончательно переместившийся в диапазон 5 ГГц, что положительно сказалось на надежности подключения и скорости передачи данных: она составляет до 1,69 Гбит/с на одну антенну и до 6,77 Гбит/с в целом. Кроме того, это первая версия, в которой была полноценно внедрена технология Beamforming (подробнее см. «Функции и возможности»).

— Wi-Fi 6, Wi-Fi 6E (802.11ax). Развитие Wi-Fi 5, представившее как увеличение скорости до 10 Гбит/с, так и ряд важных усовершенствований в формате работы. Одним из наиболее важных нововведений является использование обширного диапазона частот — от 1 до 7 ГГц; это, в частности, позволяет автоматически выбирать наименее загруженную полосу частот, что положительно влияет на скорость и надежность подключения. При этом устройства Wi-Fi 6 способны работать и на классических частотах 2,4 ГГц и 5 ГГц, а модификация стандарта Wi-Fi 6E способна работать на частотах от 5.9 до 7 ГГц, принято считать что устройства с поддержкой Wi-Fi 6E работают на частоте 6 ГГц, при этом есть полная совместимость с более ранними стандартами. Кроме того, в этой версии были внедрены некоторые улучшения, касающиеся одновременной работы нескольких устройств на одном канале, в частности речь о технологии OFDMA. Благодаря этому Wi-Fi 6 дает наименьшее из современных стандартов падение скорости при загруженном эфире, а модификация Wi-Fi 6E работающая на частоте 6 ГГц имеет наименьшее количество помех.

— Wi-Fi 7 (802.11be). Данный стандарт Wi-Fi начали внедрять в 2023 году. Благодаря использованию модуляции 4096-QAM из него можно выжать максимальную теоретическую скорость обмена данными до 46 Гбит/с. Wi-Fi 7 поддерживает работу в трех частотных диапазонах: 2.4 ГГц, 5 ГГц и 6 ГГц. Максимальную ширину полосы пропускания в стандарте нарастили со 160 МГц до 320 МГц — чем шире канал, тем больше данных он способен передать в одночасье. Из интересных новшеств в Wi-Fi 7 отмечается разработка MLO (Multi-Link Operation) — с ее помощью подключенные устройства обмениваются данными, используя одновременно несколько каналов и частотных диапазонов, что особенно важно для VR и онлайн-игр. Минимизировать задержки связи при условии множества подключенных клиентских устройств призвана технология Multiple Resource Unit. Также на увеличение пропускной способности при большом количестве одновременных подключений нацелен новый протокол 16х16 MIMO, удваивающий количество пространственных потоков в сравнении с предыдущим стандартом Wi-Fi 6.

— WiGig (802.11ad). Стандарт Wi-Fi, использующий рабочую частоту в 60 ГГц; скорость передачи данных может достигать 10 Гбит/с (в зависимости от конкретной версии WiGig). Канал 60 ГГц значительно менее загружен, чем более популярные 2,4 ГГц и 5 ГГц, что положительно сказывается на надежности передачи данных и снижает задержку; последнее бывает особенно важно в играх и некоторых других специальных задачах. С другой стороны, увеличение частоты значительно снизило дальность подключения (подробнее см. «Частотный диапазон»), так что на практике данный стандарт подходит лишь для связи в пределах одной комнаты.

Стоит учитывать, что на практике скорость передачи данных обычно значительно ниже теоретического максимума — особенно при работе нескольких Wi-Fi устройств на одном канале. Такж отметим, что различные стандарты обратно совместимы между собой (с ограничением скорости по более медленному) при условии совпадения частот: например, 802.11ac может работать с 802.11n, но не с 802.11g.

Диапазоны работы

Количество диапазонов и каналов беспроводной связи, поддерживаемое роутером. Уточняется только для моделей, работающих более чем с одним диапазоном.

Двухдиапазонный (2.4 ГГц и 5 ГГц). Устройства, поддерживающие одновременно два популярных диапазона связи — 2,4 ГГц и 5 ГГц — в формате «по одному каналу связи на диапазон». Это обеспечивает совместимость с большинством стандартов Wi-Fi (см. выше), а в некоторых случаях еще и положительно сказывается на качестве связи. К примеру, в адаптере Wi-Fi (см. «Тип устройства») с данной особенностью может предусматриваться возможность оценивать загруженность обоих диапазонов и автоматически выбирать менее загруженный.

Трехканальный (2.4 ГГц и 5 ГГц в 2 канала). Усовершенствованная версия двухдиапазонного формата работы: в диапазоне 5 ГГц связь осуществляется по двум каналам. Это позволяет, к примеру, «поднять» на одном роутере сразу три канала беспроводного подключения (три видимых сети в списке беспроводных сетей) и добиться еще более высокой пропускной способности. Преимущества такого формата особенно заметны при работе роутера одновременно с несколькими беспроводными устройствами.

Трехдиапазонный (2.4 ГГц, 5 ГГц, 60 ГГц). Наиболее «всеядная» разновидность современного Wi-Fi оборудования, совместимая со всеми популярными стандартами — начиная от устаревшего 802.11 b/g и заканчивая сравнительно новы...м 802.11 ad. Также обилие диапазонов способствует повышению скорости, особенно при работе с разнодиапазонными устройствами.

Макс. скорость при 2.4 ГГц

Максимальная скорость, обеспечиваемая устройством при беспроводной связи в диапазоне 2.4 ГГц.

Этот диапазон используется в большинстве современных стандартов Wi-Fi (см. выше) — как один из доступных или вовсе единственный. Теоретический максимум для него составляет 600 Мбит/с. В реальности Wi-Fi на частоте 2.4 ГГц используется большим количеством клиентских устройств, откуда выплывает перегруженность каналов передачи данных. Также на скоростные показатели работы оборудования влияет количество антенн. Добиться заявленной в спецификации скорости можно разве что в идеальной ситуации. На практике она может быть заметно меньше (нередко — в разы), особенно при обилии беспроводной техники, одновременно подключенной к оборудованию. Максимальная скорость при 2.4 ГГц уточняется в характеристиках конкретных моделей для понимания реальных возможностей Wi-Fi оборудования. Что касается цифр, то по возможностям в диапазоне 2.4 ГГц современное оборудование условно делят на модели со скоростью до 500 Мбит/с включительно и свыше 500 Мбит/с.

Макс. скорость при 5 ГГц

Максимальная скорость, обеспечиваемая устройством при беспроводной связи в диапазоне 5 ГГц.

Этот диапазон используется в Wi-Fi 4, Wi-Fi 6 и Wi-Fi 6E как один из доступных, в Wi-Fi 5 — как единственный (см. «Стандарты Wi-Fi»). Максимальная скорость уточняется в характеристиках для того, чтобы обозначить реальные возможности конкретного оборудования — они могут быть заметно скромнее, нежели общие возможности стандарта. Также на деле все зависит от поколения Wi-Fi. К примеру, устройства с поддержкой Wi-Fi 5 могут в теории могут выдавать до 6928 Мбит/с (при использовании восьми антенн), с поддержкой Wi-Fi 6 — до 9607 Мбит/с (при использовании тех же восьми пространственных потоков). Максимально возможная скорость связи достигается при соблюдении определенных условий, и далеко не каждая модель Wi-Fi оборудования полностью удовлетворяет им. Конкретные же цифры условно разбиты на несколько групп: значение до 500 Мбит/с является довольно скромным, многие устройства поддерживают скорости в диапазоне 500 – 1000 Мбит/с, показатели в 1 – 2 Гбит/с можно отнести к средним, а наиболее продвинутые модели в классе обеспечивают скорость обмена данными свыше 2 Гбит/с.

Полоса пропускания

160 МГц. Наличие полосы в 160 МГц повышает пропускную способность для передачи данных и позволяет приблизить ее к максимальной теоретической скорости.

320 МГц. Полосу пропускания 320 МГц ввели в стандарте Wi-Fi 7 (см. соответствующий пункт). Она обеспечивает существенный прирост скорости обмена данными — вдвое больше сравнительно с шириной беспроводного канала 160 МГц.

WAN

WAN порт характеризует возможность устройства на проводной прием сигнала. Могут встречаться модели как с одним портом, так и на два WAN-порта, а в редких случаях и на большее количество подключаемых провайдеров. Такое расширенное количество разъемов WAN влияет на стоимость и соответственно встречается в больше части среди роутеров профессионального уровня.

По скорости при выборе устройства в приоритете является скорость выходного LAN-порта или Wi-Fi. Однако более скоростные WAN-порты (1 Гбит/с, 2.5 Гбит/с, 5 Гбит/с, 10 Гбит/с) позволяют разделить нагрузку сразу на несколько выходов без снижения скоростных показателей, как это может быть в случае с WAN-портом 100 Мбит/с.

Съемная антенна

Наличие съемной антенны (или нескольких антенн) в конструкции устройства.

Съемными могут делаться исключительно внешние антенны (см. «Тип антенн»). Такая конструкция удобна прежде всего при хранении и транспортировке: она позволяет снять наружное оснащение, сделав устройство менее громоздким. Кроме того, многие устройства с данной особенностью допускают замену штатных антенн на другие (например, более мощные или с более оптимальной диаграммой направленности). Некоторые из подобных моделей даже изначально продаются без антенн — в расчете на то, что пользователь выберет их сам, на свое усмотрение; такая комплектация не нужна для бытового применения, зато бывает очень удобной при подборе высококлассного профессионального оборудования. С другой стороны, съемная конструкция снижает надежность крепления антенны, повышает вероятность сбоев в точке подключения и увеличивает стоимость устройства. Поэтому большинство современного Wi-Fi оборудования оснащается все же несъемными антеннами.

Коэффициент усиления

Коэффициент усиления, обеспечиваемый каждой антенной устройства; если в конструкции предусмотрены антенны с разными характеристиками (характерный пример — одновременно внешние и внутренние антенны), то информация, как правило, указывается по самому высокому значению.

Усиление сигнала в данном случае обеспечивается за счет сужения диаграммы направленности — подобно тому, как в фонариках с регулируемой шириной луча уменьшение этой ширины увеличивает дальность освещения. Простейшие всенаправленные антенны сужают сигнал в основном в вертикальной плоскости, «сплющивая» область охвата — так, что она становится похожа на горизонтальный диск. В свою очередь, направленные антенны (преимущественно в специализированных точках доступа, см. «Тип устройства») создают узкий луч, охватывающий совсем небольшое пространство, зато дающий весьма солидное усиление.

Конкретно же коэффициент усиления описывает, насколько мощным получается сигнал на основном направлении антенны по сравнению с идеальной антенной, равномерно распространяющей сигнал во все стороны. Вместе с мощностью передатчика (см. ниже) это определяет суммарную мощность оборудования и, соответственно, эффективность и дальность связи. Собственно, для определения суммарной мощности достаточно прибавить коэффициент усиления в dBi к мощности передатчика в dBm; dBi и dBm в данном случае можно рассматривать как одни и те же единицы (децибелы).

В целом подобные данные редко требуются рядовому пользователю,...однако они могут пригодиться в некоторых специфических ситуациях, с которыми приходится иметь дело специалистам. Детальные методики расчетов для таких ситуаций можно найти в специальных источниках; здесь же подчеркнем, что не всегда имеет смысл гнаться за высоким коэффициентом усиления антенны. Во-первых, как говорилось выше, это достигается ценой сужения области охвата, что может создавать неудобства; во-вторых, слишком сильный сигнал тоже нередко бывает нежелательным, подробнее см. «Мощность передатчика».
TP-LINK Archer C5400X часто сравнивают
TP-LINK Archer AX6000 часто сравнивают