Разрешение
Собственное разрешение монитора. В идеале разрешение видеосигнала должно быть таким же, тогда качество изображения на экране будет максимальным.
В целом чем выше разрешение — тем выше детализация и тем более продвинутым является экран, однако тем дороже он будет стоить (при прочих равных) и тем большая мощность видеокарты потребуется для нормальной работы с таким разрешением. Что же касается конкретных значений, то они в современных мониторах довольно разнообразны, однако все разрешения можно разделить на несколько общих категорий:
—
HD (720). Экраны, подходящие для HD-видео с разрешением 1280х720. Отметим, что в данную категорию включены также модели с разрешением 1024х768 — этот показатель несколько меньше, чем необходимо для отображения HD в оригинальном размере, однако качество HD-картинки на таком экране все равно получается довольно высоким. Наиболее популярный вариант среди HD-мониторов — 1366х768, встречаются также модели 1280х768, 1280х800 и неширокоэкранные (5:3) 1280х1024.
—
Full HD (1080). Мониторы под изображение в формате Full HD. Классический, наиболее популярный вариант такого разрешения — 1920х1080 (
формат 16:9), однако среди мониторов встречаются и другие варианты — в том числе такие специфические, как
ультраширокоформатный (32:9) 3840х1080, а также 1600х1200 (кадр 1920х1080 в него «не
...влазит» по ширине, но данное разрешение все равно принято относить к Full HD). На сегодняшний день Full HD представляет собой неплохой компромисс между качеством изображения, стоимостью экрана и требованиям к видеокарте. Как следствие, именно этот формат наиболее популярен среди современных мониторов.
— Quad HD. Своего рода промежуточный вариант между популярным Full HD и продвинутым требовательным Ultra HD 4K. Охватывает разрешения от 1920х1440 до 3200х2400, хотя большинство современных Quad HD мониторов вписываются в более узкий диапазон — от 2560х1440 до 3840х1600. Такой экран может стать неплохим вариантом для тех, кому «Full HD мало, а 4K — много».
— Ultra HD (4K). Данный стандарт предполагает размер кадра по горизонтали примерно в 4000 пикс, однако конкретные разрешения могут варьироваться. Популярные варианты, встречающиеся в мониторах, включают 3840х2160, 4096х2160 и 4096х2304. В целом UHD 4K дает в 4 раза больше пикселей на экране, чем в Full HD; подобные разрешения характерны для высококлассных мониторов и чаще всего сочетаются с крупной диагональю — от 27" (хотя встречаются и исключения).
— Ultra HD (5K). Еще более продвинутый стандарт, чем UHD 4K, предполагающий размер кадра по горизонтали около 5000 пикс — например, 5120х2160. Применяется крайне редко, в основном в топовых экранах профессионального назначения.
— 8K. Дальнейшее, после 5K, развитие HD-стандартов, предусматривающее кадр с размером по горизонтали около 8000 — к примеру, один из вариантов разрешения 8K в мониторах составляет 7680x4320. Позволяет получить чрезвычайно четкое и детализированное изображение, однако такие мониторы с высоким разрешением обходятся очень дорого, да и источник сигнала в подобном разрешении найти не так просто. Поэтому пока на рынке представлены лишь единичные модели 8K-мониторов.Размер пикселя
Размер одной точки (пикселя) на экране монитора. Этот параметр связан с максимальным разрешением монитора и его размером по диагонали— чем выше разрешение, тем меньше размер пикселя (при неизменной диагонали) и наоборот, чем больше диагональ, тем больше размер одного пикселя (при неизменном разрешении). Чем меньше размер одного пикселя — тем более чёткое изображение будет выводить монитор, тем меньше будет заметна его зернистость, что особенно важно на больших мониторах. С другой стороны, малый размер пикселя создаёт дискомфорт при работе с мелкими деталями и текстом — в основном это касается мониторов с небольшой диагональю.
Время отклика (GtG)
Время, затрачиваемое каждой отдельной точкой на мониторе на переключение из одного состояния в другое. Чем
меньше время отклика — тем быстрее матрица реагирует на управляющий сигнал, тем меньше задержка и тем лучше будет качество изображения в динамичных сценах.
Отметим, что в данном случае используется метод gray-to-gray (время включения от 10 % серого до 90 %). Обращать внимание на этот параметр стоит в том случае, если монитор специально приобретается для динамичных игр, просмотра кино и другого применения, связанного с быстрым движением на экране. Впрочем нет смысла гнаться за самыми быстрыми модели. Не часто можно определить разницу между
1 мс и
5 мс. Для большинства сценариев вполне сгодятся
мониторы с откликом 4 мс. В любом случае, все познается в сравнении и лучше довериться живым впечатлениям
Яркость
Максимальная яркость, обеспечиваемая экраном монитора.
Выбирать
монитор с высокой яркостью стоит прежде всего в том случае, если устройство планируется использовать при ярком внешнем освещении — например, если на рабочее место попадает солнечный свет. Тусклое изображение может быть «заглушено» таким освещением, что сделает работу некомфортной. В других же условиях высокая яркость экрана сильно утомляет глаза.
Большинство современных мониторов выдает порядка 200 – 400 кд/м2 — этого обычно вполне достаточно даже на солнце. Впрочем, встречаются и более высокие значения: например, в ЖК-панелях (см. «Тип») яркость может доходить до нескольких тысяч кд/м2. Это необходимо с учетом специфики подобных устройств — изображение должно быть хорошо различимо с большого расстояния.
Глубина цвета
Глубина цвета, поддерживаемая монитором.
Данный параметр характеризует количество оттенков, которое способен отобразить экран. И здесь стоит напомнить, что изображение в современных мониторах строится на основе 3 базовых цветов — красный, зеленый, синий (схема RGB). А число бит указывается не для всего экрана, а для каждого базового цвета. К примеру, 6 бит (минимальная глубина цвета для современных мониторов) означает, что экран способен выдать по 2^6, то есть по 64 оттенка красного, зеленого и синего цвета; общее число оттенков будет составлять 64*64*64 = 262 144 (0,26 млн). Глубина цвета в
8 бит (по 256 оттенков на каждый базовый цвет) дает уже общее количество в 16,7 млн цветов; а наиболее продвинутые современные мониторы поддерживают цветность в
10 бит, позволяющую работать более чем с миллиардом оттенков.
Отдельного упоминания стоят экраны с поддержкой технологии FRC; в наше время можно встретить модели с маркировкой «
6 бит + FRC» и «
8 бит + FRC». Эта технология была разработана для того, чтобы улучшить качество изображения в тех ситуациях, когда входящий видеосигнал имеет большую глубину цвета, чем экран — например, если на 8-битную матрицу подается 10-битное видео. Если такой экран поддерживает FRC — картинка на нем будет заметно качественнее, чем на обычном 8-битном мониторе (хотя и несколько хуже, чем на полноце
...нном 10-битном — зато экраны «8 bit +FRC» обходятся заметно дешевле).
Высокая глубина цвета важна прежде всего для профессиональной работы с графикой и других задач, требующих высокой точности цветопередачи. С другой стороны, подобные возможности заметно влияют на стоимость монитора. К тому же стоит помнить, что качество цветопередачи зависит не только от глубины цвета, но и от других параметров — в частности, цветового охвата (см. ниже).Цветовой охват (sRGB)
Цветовой охват монитора по цветовой модели по sRGB.
Любой цветовой охват указывается в процентах, однако не относительно всего многообразия видимых цветов, а относительно условного цветового пространства (цветовой модели). Это связано с тем, что ни один современный экран не способен отобразить все видимые человеком цвета. Тем не менее, чем больше цветовой охват — тем шире возможности монитора, тем качественнее получается его цветопередача.
В наше время sRGB фактически является стандартной цветовой моделью, принятой для компьютерной техники; именно ее используют при разработке и производстве большинства видеокарт. Для телевидения используется аналогичный по параметрам стандарт Rec. 709. По диапазону цветов эти модели идентичны, и процент охвата по ним получается одинаковым. В наиболее продвинутых мониторах он может
достигать и даже превышать 100 %; именно такие значения считаются необходимыми для высококлассных экранов, в т.ч. профессиональных.
Цветовой охват (DCI P3)
Цветовой охват монитора по цветовой модели DCI P3.
Любой цветовой охват указывается в процентах, однако не относительно всего многообразия видимых цветов, а относительно условного цветового пространства (цветовой модели). Это связано с тем, что ни один современный экран не способен отобразить все видимые человеком цвета. Тем не менее, чем больше цветовой охват — тем шире возможности монитора, тем качественнее получается его цветопередача.
DCI P3 представляет собой профессиональную цветовую модель, применяемую в основном в цифровых кинотеатрах. Она заметно обширнее стандартной sRGB, благодаря чему дает более качественные и достоверные цвета. Соответственно, и значения в процентах получаются меньше — к примеру, 115 % охвата по sRGB соответствуют приблизительно 90 % охвата по DCI P3; в наиболее продвинутых современных мониторах охват по данному стандарту составляет
98 – 100 % . В то же время поддержка DCI-P3 обходится недешево, а потому встречается она преимущественно в высококлассных мониторах профессионального и игрового назначения.
Поддержка HDR
Данная технология предназначена для расширения диапазона яркости, воспроизводимого монитором; проще говоря, HDR-модель будет отображать более яркий белый и более тёмный черный, чем «обычный» дисплей. На практике это означает значительное улучшение качества цветопередачи. С одной стороны, HDR обеспечивает очень «живое» изображение, близкое к тому, что видит человеческий глаз, с обилием оттенков и тонов, которые обычный экран передать не способен; с другой стороны, эта технология позволяет добиться очень ярких и сочных цветов.
В современных мониторах с HDR может использоваться обозначение по стандарту DisplayHDR. Данный стандарт учитывает ряд параметров, определяющих общее качество работы HDR: яркость, цветовой охват, глубину цвета и т.п. По результатам замеров монитору присваивается одна из маркировок:
DisplayHDR 400 означает сравнительно скромные возможности HDR,
DisplayHDR 600 — средний уровень,
DisplayHDR 1000 — выше среднего,
DisplayHDR 1400 — продвинутый. При этом отсутствие маркировки по DisplayHDR само по себе ничего не означает: просто далеко не каждый HDR-монитор проверяется по этому стандарту.
Стоит учитывать, что для полноценного использования HDR необходим не только
соответствующий монитор, но и контент (фильмы, телевещание и т.п.), изначально созданный в HDR. Кроме того, суще
...ствует несколько разных технологий HDR, не совместимых друг с другом. Поэтому при покупке монитора с данной функцией крайне желательно уточнить, какую именно версию он поддерживает.Передача видео
—
VGA. Разъём, разработанный для передачи аналогового видеосигнала ещё в эпоху ЭЛТ-мониторов (специально под них). На сегодняшний день считается устаревшим и постепенно выходит из употребления — в частности, из-за слабой пропускной способности, не позволяющей полноценно работать с HD-контентом, а также двойного преобразования сигнала при использовании VGA в ЖК-мониторах (что может стать потенциальным источником помех).
—
DVI. Разъём для передачи видеосигнала, разработанный специально под ЖК-устройства, включая мониторы. Хотя изначально аббревиатура DVI расшифровывается как «цифровой видеоинтерфейс», данный интерфейс допускает также аналоговую передачу данных. Собственно, существует три основных разновидности DVI: аналоговый, комбинированный и цифровой. Первая разновидность в современной компьютерной технике почти вышла из употребления (эту функцию фактические выполняет разъём VGA), а чисто цифровой разъём —
DVI-D — в нашем каталоге указывается отдельно (см. ниже). Поэтому, если в характеристиках монитора указан «просто DVI» — скорее всего, речь идёт о комбинированном разъёме DVI-I. По характеристикам аналогового видеосигнала он аналогичен описанному выше VGA (и даже совместим с ним через простейший переходник), по цифровым возможностям — DVI-D (одноканальному, не Dual Link). Впрочем, в связи с распространением чисто цифровых стандартов DVI-I встречается всё реже.
<
...br>
— DVI-D. Разновидность описанного выше интерфейса DVI, поддерживающая исключительно цифровой формат видеосигнала. Стандартный (Single Link) интерфейс DVI-D позволяет передавать видео в разрешении до 1920х1080 при частоте кадров 75 Гц или 1920х1200 при частоте кадров 60 Гц, чего уже достаточно для работы с современными разрешениями до Full HD включительно. Помимо этого, встречается двухканальная (Dual Link) разновидность данного разъёма, имеющая увеличенную пропускную способность и позволяющая работать с разрешениями до 2560х1600 (на 60 Гц; либо 2048х1536 на 75 Гц). Соответственно, конкретный тип DVI-D зависит от разрешения монитора. При этом одноканальный экран можно подключить к двухканальной видеокарте, но не наоборот. Также отметим, что с разъёмами ситуация схожа: порты Single Link и Dual Link несколько различаются по конструкции, и одноканальный кабель совместим с двухканальным входом/выходом, но, опять же, не наоборот.
— DisplayPort. Интерфейс, изначально созданный для передачи видео (впрочем, может применяться и для аудиосигнала — в этом DisplayPort аналогичен HDMI). Встречается во многих современных моделях мониторов. Отметим, что мониторы со входами DisplayPort совместимы также с выходами Thunderbolt (через переходник).
Конкретные возможности данного разъема зависят от его версии. В современных мониторах встречаются такие варианты:
- v.1.2. Наиболее ранняя из общераспространенных в наше время версий, выпущенная в 2010 году. Именно в ней впервые были представлены такие возможности, как поддержка 3D и возможность последовательного (daisy chain) подключения нескольких экранов. Версия 1.2 позволяет передавать 5К-видео на частоте кадров 30 к/с, работа с более высокими разрешениями (до 8К) также возможна, но уже с определенными ограничениями.
- v.1.3. Версия DisplayPort, выпущенная в 2014 году. Имеет в полтора раза большую пропускную способность, чем v.1.2, и позволяет передавать видео 8К на 30 к/с, 5К — на 60 к/с и 4К — на 120 к/с. Кроме того, в данной версии появилась функция Dual-mode, позволяющая подключаться к выходам HDMI и DVI через простейшие пассивные переходники.
- v 1.4. В этой версии максимальная частота кадров при работе с одним экраном увеличилась до 120 к/с для стандарта 8K и до 240 к/с — для стандартов 4K и 5K (при этом данные предполагается передавать со сжатием по технологии DSC — Display Stream Compression). Из прочих особенностей можно упомянуть совместимость с HDR10 и возможность одновременной передачи до 32 каналов звука.
- v 2.1. Версия образца 2022 года, использующая ту же спецификацию физического уровня, что и USB4. Пропускную способность интерфейса нарастили вдвое сравнительно с v 1.4 (до 80 Гбит/с, из которых для передачи данных доступно 77.37 Гбит/с). При этом реализована поддержка подключения дисплеев с разрешением вплоть до 16К при 60 к/с, 8К при 120 к/с, 4К при 240 Гц и 2К при 480 Гц (без дополнительного использования технологии DSC — Display Stream Compression). Длина кабелей DP40 (с пропускной способностью 40 Гбит/с) теперь может превышать два метра, а DP80 (80 Гбит/с) — более одного метра.
— Mini Display Port. Уменьшенная версия описанного выше DisplayPort, применяемая преимущественно в ноутбуках.
— HDMI. Интерфейс HDMI изначально создан для передачи видео высокого разрешения и многоканального звука в цифровом виде по одному кабелю. Это наиболее популярный из современных интерфейсов подобного назначения, выходы HDMI являются практически обязательными как для компьютерных видеокарт, так и для медиацентров, DVD/Blu-ray проигрывателей и прочей подобной техники.
Наличие в мониторе нескольких выходов данного типа позволяет держать его подключённым одновременно к нескольким источникам сигнала — например, компьютеру и спутниковому ТВ-тюнеру. Таким образом можно переключаться между источниками через программные настройки, не возясь с переподключением кабелей, а также использовать функцию PBP.
При этом сам порт может быть уменьшенным (mini HDMI , micro HDMI ) и имеет различные версии, а наиболее распространенные в наше время таковы:
- — v.1.4. Самая ранняя версия из активно применяемых в наше время; появилась в 2009 году. Поддерживает разрешения до 4096х2160 при 24 к/с, а в стандарте Full HD (1920х1080) частота кадров может достигать 120 к/с; возможна также передача 3D-видео.
-
— v.2.0. Версия, представленная в 2013 году как масштабное обновление стандарта HDMI. Поддерживает 4K видео с частотой кадров до 60 к/с (благодаря чему также известна как HDMI UHD), а также до 32 каналов звука и до 4 аудиопотоков одновременно. Также в этой версии появилась поддержка сверхширокого формата 21:9.
-
— v.2.1. Довольно значительное, по сравнению с версией 2.0, обновление, представленное в конце 2017 года. Дальнейшее повышение пропускной способности позволило предусмотреть в поддержку разрешений до 8К на 120 к/с включительно. Также были внесены улучшения, касающиеся работы с HDR. Отметим, что для использования всех возможностей HDMI v 2.1 нужны кабели типа HDMI Ultra High Speed, хотя базовые функции доступны и с обычными кабелями.
— USB C (DisplayPort AltMode). Ещё одна разновидность USB-интерфейса, используемого для работы с видеосигналом. Имеет небольшие размеры (не намного больше microUSB) и двустороннюю конструкцию, позволяющую подключать штекер любой стороной — это делает Type C более удобным, чем предыдущие стандарты. При этом отметим, что подобный монитор может быть изначально рассчитан на подключение к выходу USB C (по крайней мере, именно такой кабель-переходник может поставляться в комплекте), этот момент не помешает уточнить отдельно.
— Интерфейс Thunderbolt. Thunderbolt является протоколом передачи данных (применяется в устройствах Apple), пропускная способность в котором достигает 40 Гбит/с. Сам же разъем как и скорость зависит от версии: Thunderbolt v1 и v2 использует miniDisplayPort (см. выше), мониторы с входами Thunderbolt не обязательно совместимы с оригинальными выходами miniDisplayPort — эту совместимость не помешает уточнить отдельно. А Thunderbolt v3 основан на разъеме USB C (см. выше).