Тёмная версия
Казахстан
Каталог   /   Компьютерная техника   /   Сетевое оборудование   /   Коммутаторы

Сравнение Cisco SF350-24MP vs Cisco WS-C2960+24LC-L

Добавить в сравнение
Cisco SF350-24MP
Cisco WS-C2960+24LC-L
Cisco SF350-24MPCisco WS-C2960+24LC-L
от 365 376 тг.
Товар устарел
Сравнить цены 1
ТОП продавцы
нет в продаже
Типуправляемый 3 уровня (L3)управляемый 2 уровня (L2)
Форм-фактормонтируемый в стойкумонтируемый в стойку
Пропускная способность12.8 Гбит/с
Размер таблицы MAC-адресов16K
Порты
Fast Ethernet24 шт24 шт
Gigabit Ethernet2 шт2 шт
SFP (оптика)4 шт2 шт
Uplink4 шт2 шт
Тип UplinkSFP/Gigabit EthernetSFP/Gigabit Ethernet
Консольный порт
Функции и возможности
Управление
SSH
Telnet
Web-интерфейс
SNMP
SSH
Telnet
Web-интерфейс
SNMP
Базовые возможности
DHCP-сервер
Link Aggregation
VLAN
защита от петель
DHCP-сервер
 
VLAN
 
Маршрутизация
Статическая
PoE
PoE (выход)802.3af/at802.3af
Выходов с поддержкой PoE24 шт8 шт
Мощность на выход PoE30 Вт15 Вт
Суммарная мощность PoE375 Вт130 Вт
Общее
Блок питаниявстроенныйвстроенный
Рабочая температура-5 °C ~ +45 °C
Габариты (ШхГхВ)440x257x44 мм445х236х44 мм
Вес4120 г3600 г
Дата добавления на E-Katalogмарт 2019ноябрь 2015

Тип

Неуправляемый. Простейшая разновидность коммутатора, не имеющая, как следует из названия, возможности управления; да и возможности наблюдения за состоянием устройства ограничиваются обычно простейшими индикаторами в виде лампочек (питание, активность порта). Достоинствами таких моделей являются автономность, простота в использовании и невысокая стоимость. Главный недостаток этого типа очевиден — невозможность настройки параметров работы. Неуправляемые коммутаторы хорошо подходят для небольших локальных сетей вроде дома или малого офиса, где не требуется особых ухищрений с администрированием; а вот для крупных организаций их использовать не следует.

Настраиваемый. В данную категорию отнесены коммутаторы, допускающие изменение некоторых параметров работы. В то же время возможности таких изменений значительно уже, чем в управляемых моделях, и дело обычно ограничивается отключением отдельных портов, переключением стандартных скоростей для разъёмов Ethernet (например, со 100 Мбит/с на 10 Мбит/с) и простейшими инструментами мониторинга вроде просмотра сетевой статистики. К тому же после перенастроки устройство, как правило, нужно перезагрузить — иными словами, управлять работой коммутатора «на лету» невозможно. Тем не менее, к подобному типу могут относиться и профессиональные модели, рассчитанные на крупные сети.

Управляемый 2 уровня. Термин «управляемый...» означает, что коммутатор имеет возможность перенастройки «на лету» — в отличие от описанных выше настраиваемых моделей. Кроме того, общий функционал таких устройств в большинстве случаев заметно шире. А «2 уровень» означает, что устройство поддерживает только второй уровень сетевой модели OSI — канальный, отвечающий за физическую адресацию. На практике это означает, что «свич» способен работать с MAC-адресами подключённых устройств, но адресация по IP находится за пределами его возможностей.

— Управляемый 3 уровня. Разновидность управляемых коммутаторов (см. выше) поддерживающая третий уровень сетевой модели OSI. Этот уровень отвечает за логическую адресацию и определение маршрутов, что позволяет устройству работать с IP-адресами. Благодаря этому модели данного типа считаются наиболее продвинутыми, в них часто предусматриваются не только традиционные для «свичей» возможности, но и отдельные функции маршрутизаторов. С другой стороны, обилие возможностей заметно сказывается на цене. Подобные коммутаторы обычно применяются в дата-центрах, телекоммуникационных компаниях и других местах, связанных с профессиональным использованием сетей; приобретать такое устройство для дома или небольшого офиса навряд ли имеет смысл.

Пропускная способность

Пропускная способность коммутатора — максимальный объем трафика, который он способен обслужить. Указывается в гигабитах в секунду.

Данный параметр напрямую зависит от количества сетевых портов в устройстве (не считая Uplink). Собственно, даже если пропускная способность не приведена в характеристиках — еще можно вычислить по такой формуле: число портов, умноженное на пропускную способность отдельного порта и умноженное на два (так как учитывается и входящий, и исходящий трафик). К примеру, модель на 8 разъемов Gigabit Ethernet и 2 порта SFP будет иметь пропускную способность в (8*1 + 2*1)*2 = 20 Гбит/с.

Выбор по данному показателю достаточно очевиден: нужно оценить предполагаемые объемы трафика в обслуживаемом сегменте сети и убедиться, что пропускная способность коммутатора будет перекрывать ее с запасом хотя бы в 10 – 15 % (это даст дополнительную гарантию на случай нештатных ситуаций). При этом, если планируется часто работать на высоких, близких к максимальным, нагрузках — не помешает уточнить еще такую характеристику, как внутренняя пропускная способность коммутатора. Она обычно приводится в подробном техническом описании, и если это значение меньше общей пропускной способности — при значительных нагрузках могут возникнуть серьезные проблемы в работе.

Размер таблицы MAC-адресов

Максимальное количество MAC-адресов, которое может одновременно храниться в памяти коммутатора. Указывается в тысячах, например, 8K — 8 тысяч.

Напомним, MAC-адрес — это уникальный адрес каждого отдельного сетевого устройства, используемый при физической маршрутизации (на 2 уровне сетевой модели OSI). С такими адресами работают коммутаторы всех типов. А выбирать свич по размеру таблицы стоит с учетом максимального количества устройств, которое предполагается с ним использовать (в том числе в расчете на возможное расширение сети). Если таблицы не будет хватать — коммутатор будет перезаписывать новые адреса поверх старых, что способно заметно замедлить работу.

SFP (оптика)

Количество оптических сетевых портов стандарта SFP, предусмотренное в конструкции коммутатора. Подчеркнем, что речь идет об «обычных» SFP; данные по SFP+, как правило, указываются отдельно.

Конкретно в свичах под маркировкой «SFP» обычно подразумевается разъем под оптоволокно со скоростью подключения в 1 Гбит/с. Формально это не так много по сравнению со скоростями RJ-45; однако данный формат подключения имеет ряд преимуществ. Одним из главных является бОльшая эффективная дальность: упомянутый гигабитный стандарт, применяемый в коммутаторах, работает с кабелем длиной до 550 м, причем по меркам оптоволокна это еще очень немного. Правда, сам кабель чувствителен к перегибам и требует достаточно деликатного обращения; с другой стороны, он абсолютно невосприимчив к электромагнитым помехам. С другой стороны, в целом формат SFP заметно менее популярен в сетевом оборудовании, нежели RJ-45; поэтому и портов такого типа даже в продвинутых устройствах предусматривается немного. Так, наибольшее распространение получили решения на 2 разъема или 4 разъема SFP, хотя встречается и большее количество — 6, 8, а то и 10 и более. Также стоит учитывать, что в коммутаторах могут использоваться так называемые combo-разъемы, сочетающие в себе SFP и RJ-45; наличие таких портов уточняется в примечаниях, они учитываются как при подсчете RJ-45, так и при подсчете SFP.

Уточним, что входы Uplink также нередко использую...т данный тип разъема; однако их количество указывается отдельно (см. ниже).

Uplink

Количество разъемов Uplink, предусмотренное в конструкции коммутатора.

«Uplink» в данном случае — это не тип, а специализация разъема: так называют сетевой интерфейс, через который коммутатор (и подключенные к нему сетевые устройства) связываются с внешними сетями (включая Интернет) или сегментами сети. Иными словами, это своего рода «ворота», через которые весь трафик из сегмента сети, обслуживаемого коммутатором, передается дальше. Uplink, в частности, может использоваться для подключения к аналогичному «свичу» (для горизонтального расширения сети) или к устройству более высокого уровня (вроде коммутатора ядра).

Соответственно, число разъемов Uplink — это максимальное число внешних подключений, которое может обеспечить коммутатор без использования дополнительного оборудования. Конкретный же тип такого разъема может быть разным, однако это обычно одна из разновидностей LAN или SFP; подробнее см. «Тип Uplink».

Базовые возможности

DHCP-сервер. Функция, облегчающая управление IP-адресами подключенных к коммутатору устройств. Без собственного IP-адреса корректная работа сетевого устройства невозможна; а поддержка DHCP позволяет присваивать эти адреса как вручную, так и полностью автоматически. При этом для автоматического режима администратор может задать дополнительные параметры (диапазон адресов, максимальное время использования одного адреса). И даже в полностью ручном режиме работа с адресами производится только средствами самого коммутатора (тогда как без DHCP пришлось бы прописывать эти параметры еще и в настройках каждого устройства в сети).

Поддержка стекирования. Возможность работы устройства в режиме стека. Стек представляет собой несколько коммутаторов, воспринимаемых сетью как один «свич», с одним MAC-адресом, одним IP-адресом и с общим количеством разъемов, равным суммарному количеству портов во всех задействованных устройствах. Эта функция пригодится, если Вы хотите построить обширную сеть, на которую не хватает возможностей одного «свича», но не хотите усложнять топологию.

Link Aggregation. Поддержка коммутатором технологии агрегирования каналов. Эта технология позволяет объединять несколько параллельных физических каналов связи в один логический, что повышает скорость и надежность соединения. Проще говоря, свич с такой функцией можно подключить к другому устройст...ву (например, маршрутизатору) не одним кабелем, а сразу двумя или даже более. Увеличение скорости при этом происходит за счет суммирования пропускной способности всех физических каналов; правда, общая скорость может быть меньше суммы скоростей — с другой стороны, объединение нескольких сравнительно медленных разъемов нередко обходится дешевле, чем использование оборудования с более продвинутым единичным интерфейсом. А повышение надежности осуществляется, во-первых, за счет распределения общей нагрузки по отдельным физическим каналам, во-вторых, за счет «горячего» резервирования: выход из строя одного порта или кабеля может снизить скорость, однако не приводит к полному разрыву соединения, а при возобновлении работоспособности канал включается в работу автоматически.
Отметим, что для Link Aggregation может использоваться как стандартный протокол LACP, так и нестандартные фирменные технологии (последнее характерно, к примеру, для коммутаторов Cisco). Кроме того, существует довольно много альтернативных наименований данной технологии — port trunking, link bundling и т. п.; иногда разница заключается лишь в названии, иногда имеются и технические нюансы. Все эти подробности стоит уточнять отдельно.

VLAN. Поддержка коммутатором функции VLAN — виртуальных локальных сетей. В данном случае смысл этой функции заключается в возможности создавать отдельные логические (виртуальные) локальные сети в пределах физической «локалки». Таким образом можно, к примеру, разделить отделы в крупной организации, создав для каждого из них свою локальную сеть. Организация VLAN позволяет снизить нагрузку на сетевое оборудование, а также повысить степень защиты данных.

— Защита от петель. Наличие в коммутаторе функции защиты от петель. Петлю в данном случае можно описать как ситуацию, когда один и тот же сигнал запускается в сети по бесконечному циклу. Это может быть следствием некорректного подключения кабелей, использования избыточных соединений (redundant links) и некоторых других причин, но в любом случае подобное явление может «положить» сеть, а значит, является крайне нежелательным. Защита позволяет избежать появления петель — обычно путём отключения «зацикленных» портов.

— Ограничение скорости доступа. Возможность ограничить скорость обмена данными для отдельных портов коммутатора. Таким образом можно снизить нагрузку на сеть и предотвратить «забивание» канала отдельными терминалами.

Отметим, что данным списком дело не ограничивается: в современных коммутаторах могут встречаться и другие возможности.

Статическая

Напомним, маршрутизацией называют определение наилучшего пути, по которому каждый пакет данных можно доставить получателю. Для этого используются специальные таблицы, хранящиеся в памяти управляющего сетевого устройства с функцией маршрутизации. По способу заполнения этих таблиц данную процедуру и делят на две основных разновидности — статическую и динамическую.

Статической маршрутизацией называют такой способ, при котором все маршруты следования данных (записи в таблице маршрутизации) прописываются администратором вручную; это касается как первоначального создания таблицы, так и внесения в нее правок при изменениях в конфигурации сети. Главным преимуществом этого способа является минимум нагрузки на процессор коммутатора, что положительно сказывается на скорости и надежности работы сети. Основные же недостатки статической маршрутизации связаны с необходимостью ручного управления. Так, чем обширнее сеть — тем более сложным и трудоемким является управление ею; невнимательность администратора может стать дополнительной причиной сбоев; а диагностика некоторых неполадок заметно затрудняется — например, при сбое на канальном уровне статический маршрут остается видимым как активный, хотя данные не передаются.

PoE (выход)

Стандарт выхода (выходов) PoE, используемый в коммутаторе.

Сама по себе технология PoE (Power over Ethernet) позволяет передавать по сетевому Ethernet-кабелю не только данные, но и энергию для питания сетевых устройств. А наличие выхода (выходов) PoE дает возможность питать такие устройства от сетевых разъемов коммутатора. Это избавляет от необходимости прокладывать дополнительные провода или использовать автономные источники питания, что бывает особенно важно для некоторого оборудования — например, внешних IP-камер наблюдения. А при использовании так называемых сплиттеров — устройств, разделяющих сигнал PoE кабеля на чисто сетевые данные и ток питания — при помощи подобных выходов можно питать и оборудование, изначально не поддерживающее PoE (главное, чтобы их характеристики питания соответствовали возможностям свича).

Что касается стандартов PoE, то они определяют не просто общую мощность питания, но и совместимость с конкретными устройствами: потребитель должен поддерживать тот же стандарт, что и коммутатор, иначе нормальная работа будет невозможной. В наше время, в том числе в разъемах «свичей», можно встретить две разновидности таких стандартов — активные (802.3af, 802.3at802.3bt) и пассивный (один, так и называется). Основное отличие между этими разновидностями заключается в том, что ак...тивный PoE предусматривает согласование источника питания и нагрузки по напряжению и току, в пассивном таких функций нет, и энергия подается «как есть», без регулировок. А вот более детальное описание конкретных стандартов:

— 802.3af. Наиболее старый из используемых в наше время активных форматов питания PoE. Предусматривает мощность на выходе питания до 15 Вт (на входе потребителя — до 13 Вт) , выходное напряжение 44 – 57 В (на входе — 37 – 57 В) и ток в паре питающих проводов до 350 мА. Несмотря на «почтенный возраст», все еще продолжает достаточно широко использоваться; так что и коммутаторов, работающий только с 802.3af, в продаже (по состоянию на конец 2021 года) все еще довольно много. Однако стоит учесть, что данный стандарт охватывает сразу 4 так называемых класса мощности (с 0 по 3), различающихся по максимальному числу ватт на выходе и входе. Так что при использовании 802.3af не помешает убедиться в том, что мощности выхода будет достаточно для выбранной нагрузки.

— 802.3af/at. Сочетание сразу двух стандартов — описанного выше 802.3af и более нового 802.3at. Последний позволяет подавать на выход мощность до 30 Вт (до 25,5 Вт на входе питаемого устройстве), использует напряжение 50 – 57 В (42,5 – 57 В на входе), при этом ток в паре проводов не превышает 600 мА. Подобное сочетание обходится сравнительно недорого, при этом оно дает возможность питать большое разнообразие внешних устройств; так что на конец 2021 года именно данный вид выходов PoE пользуется в коммутаторах наибольшей популярностью.

— 802.3af/at, bt. Сочетание описанного выше 802.3af/at со стандартом 802.3bt (PoE++, PoE тип 3 или тип 4). 802.3bt — это наиболее новый из форматов питания PoE; в отличие от более ранних, он использует не 2, а 4 провода питания, что позволяет подавать на внешние устройства весьма солидную мощность — до 71 В (при 90 Вт на выходе питания). Подобные возможности бывают незаменимы при энергоснабжении оборудования с повышенным потреблением — например, внешних камер наблюдения, дополненных системами обогрева. С другой стороны, поддержка стандарта 802.3bt заметно влияет на стоимость коммутатора, а к качеству кабелей подобное подключение выдвигает особые требования. Кроме того, нужно иметь в виду, что к данному стандарту относят также формат UPoE, созданный компанией Cisco и применяемый в ее оборудовании; а этот стандарт (именно он известен как PoE тип 3) имеет более скромную мощность — до 60 Вт на выходе (до 51 Вт на входе потребителя). Да и общий стандарт 802.3bt включает два класса мощности — класс 8, при котором достигаются максимальные характеристики, и класс 7, где на выход подается 75 Вт, а до потребителя доходит около 62 Вт. Так что если вы планируете использовать оборудование 802.3bt — при выборе коммутатора из данной категории обязательно нужно убедиться, что мощности питания хватит для нормальной работы подключенных устройств.

— Пассивный. Как уже упоминалось, ключевое отличие пассивного PoE от описанных выше активных стандартов является то, что в данном случае выход питания выдает строго фиксированную мощность, без каких-либо автоматических регулировок и подстроек под конкретное устройство. Главное преимущество данного стандарта — невысокая стоимость: его реализация обходится значительно дешевле, чем активных PoE, так что такие порты можно встретить даже в коммутаторах начального уровня. С другой стороны, упомянутое отсутствие автонастройки заметно затрудняет согласование оборудования между собой — особенно в свете того, что различные устройства могут заметно различаться по выдаваемому/потребляемому напряжению и току (мощности). Из-за этого при использовании пассивного PoE нужно обращать особое внимание на совместимость источника и нагрузки по этим параметрам. Если совпадения нет, то в лучшем случае (если напряжение/мощность на выходе ниже требуемых) питание просто не заработает, а в худшем (при избытке напряжения/мощности) велика вероятность перегрузок, перегрева и даже поломок с возгораниями — причем такие неприятности могут произойти не сразу, а через довольно значительное время. И однозначно нельзя подключать к пассивным выходам PoE устройства с активными входами — по тем же причинам.

В завершение стоит сказать, что если коммутатор имеет и вход с поддержкой PoE, и несколько выходов с этой функцией — то все возможности таких выходов, как правило, могут реализовываться только при питании самого свича от розетки, а не от PoE входа. Подробнее см. «Выходов с поддержкой PoE».

Выходов с поддержкой PoE

Количество выходов с поддержкой PoE (см. выше), предусмотренное в конструкции коммутатора.

В теории это число соответствует максимальному количеству сетевых устройств, которые можно запитать через PoE. Однако на практике стоит учитывать еще два момента. Первый, и главный — это общая мощность, выдаваемая такими портами; чаще всего она указывается в пункте «Суммарная мощность PoE», а для моделей с одним выходом — в пункте «Мощность на выход PoE». В любом случае если энергопотребление подключенного оборудования будет выше этого значения — в лучшем случае питание от свича просто «не стартует», а в худшем возможны перегрузки и поломки оборудования.

Второй нюанс касается коммутаторов, которые сами могут питаться с использованием Power over Ethernet. Напомним, мощность такого питания сильно ограничена, так что когда оно используется — большая часть мощности обычно идет на работу самого свича, и энергии для подачи на выходы PoE в запасе остается немного (если вообще остается). Так что при питании коммутатора через PoE его собственные PoE-выходы в лучшем случае сильно «проседают» по возможностям (снижается максимальная мощность, уменьшается число одновременно питаемых устройств), а в худшем — и вовсе превращаются в обычные сетевые порты, без дополнительного питания. Так что если вы планируете полноценно использовать выходы PoE — стоит озаботиться подключением самого свича к сети; это особенно актуально для моделей, где таких выходов предусмотрено более одного.