Тёмная версия
Казахстан
Каталог   /   Фототехника   /   Оптические приборы   /   Микроскопы

Сравнение National Geographic 40x-640x with Adapter vs Levenhuk D320L

Добавить в сравнение
National Geographic 40x-640x with Adapter
Levenhuk D320L
National Geographic 40x-640x with AdapterLevenhuk D320L
от 57 780 тг.
Товар устарел
от 305 969 тг.
Товар устарел
Назначение
детский
 
 
лабораторный
Типбиологическийбиологический
Принцип работыоптическийоптико-цифровой
Кратность увеличения40 – 640 x40 – 1600 x
Метод исследования
светового поля
светового поля
Объектив и окуляр
Револьверная головка3 объектива4 объектива
Объектив
4x, 10x, 40x(s)
 
4x, 10x, 40x(s), 100x(s) oil
ахромат
Окуляр
монокуляр
10 - 16x
наклон 45 °
 
монокуляр
WF10x, WF16x
 
диаметр 23.2 мм
Конструкция
Предметный столик
подвижный
подвижный
Препаратоводитель
Фокусировкагрубаягрубая / точная
Подсветкасветодиодная (LED)галогенная
Нижняя подсветка
КонденсорАббе, N.A.=1.25, двухлинзовый
Диафрагмадисковаяирисовая
Функции и возможности
 
 
регулировка яркости
запись фото / видео
Интерфейсы подключения
 
USB
Общее
Источник питания
 
батарейки
сеть 230 В
 
Комплектация
 
адаптер для смартфона
набор аксессуаров и препаратов
чехол/кейс
камера
 
 
 
Материал корпусапластикметалл
Габариты220x160x115 мм
Вес0.44 кг3 кг
Дата добавления на E-Katalogоктябрь 2017сентябрь 2017

Назначение

Общее назначение микроскопа.

В наше время встречается 4 основных варианта назначения: детские, учебные, лабораторные и специализированные микроскопы. При этом разные варианты вполне могут сочетаться в одной модели — к примеру, наиболее простые и недорогие учебные микроскопы вполне могут позиционироваться также как детские, а лабораторные могут иметь особую специализацию. А вот подробное описание разных вариантов назначения:

— Детский. Наиболее простые и недорогие микроскопы, предназначенные прежде всего для детей, которые делают свои первые шаги в естественных науках (а также для других нетребовательных пользователей, которым не нужен особо продвинутый функционал). Соответственно, в подобных устройствах отсутствуют специальные функции вроде блокировки фокуса, освещения по Келлеру, видеовыходов (для цифровых и оптико-цифровых моделей), тринокуляра с возможностью подключения камеры, и т. п. Кроме того, корпус может выполняться в ярких цветах, а в качестве материала корпуса обычно используется пластик. Тем не менее, многие детские микроскопы оснащаются револьверными головками для быстрой перенастройки кратности, а общая кратность увеличения вполне может превышать 600х «из коробки» и 1000х в топовой комплектации.

— Учебный. Микроскопы, хорошо подходящие для применения в учебных целях; иногда такое назначение даже...прямо указывается производителем. Конкретный функционал подобных моделей достаточно разнообразен, тип также может быть разными (как биологическим, так и стереоскопическим). В целом же устройства этой специализации занимают промежуточное положение между простыми и недорогими детскими микроскопами и продвинутым лабораторным оборудованием. При этом существует немало моделей, имеющих комбинированное назначение — «детский/учебный» или «учебный/лабораторный». Первая разновидность проста и недорога, в образовательных целях она подойдет в основном для школы; второй вариант, в свою очередь, может пригодиться даже на университетском факультете естественных наук.

— Лабораторный. Наиболее продвинутая разновидность современных микроскопов, рассчитанная на полноценные лабораторные исследования и другие серьезные задачи. Соответственно, подобные модели стоят недешево, однако дают качественное изображение и в целом имеют наиболее обширный функционал (хотя конкретный набор возможностей, разумеется, может быть разным). Среди возможностей, встречающихся в лабораторных микроскопах — подвижный столик, установка светофильтров, 2 типа освещения (нижнее и верхнее), освещение по Келлеру, пригодность для специальных методов микроскопии (флуоресцентная, фазоконтрастная) и т.п.

— Специализированный. Микроскопы специфической конструкции и назначения, так или иначе отличающиеся от более традиционных моделей. Эти отличия могут быть разными; соответственно, различается и конкретная специализация. Так, в последнее время довольно значительную популярность получили портативные модели для смартфонов: при помощи специальной прищепки такой прибор крепится прямо на напротив основной камеры, и роль окуляра выполняет экран гаджета. Другая популярная разновидность — компактные цифровые микроскопы без собственных экранов, подключаемые к ПК или ноутбукам по USB, а то и по к смартфонам по Wi-Fi (в том числе и через Интернет). Также сюда входит профессиональное оборудование с достаточно узкой специализацией: стереоскопы со специальными креплениями для зубного протезирования, для пайки микросхем и т. п.; микроскопы для металлургических исследований; устройства на штативе с выносной штангой, предназначенные для осмотра отдельных участков на обширных предметах; сравнительные микроскопы для баллистических и трассологических исследований в криминалистике; и др.

Принцип работы

Оптический. Традиционные микроскопы, работа которых основана на использовании линз и других оптических элементов. Позволяют обеспечить высокое качество изображения и хорошую кратность увеличения, при этом не зависят от электричества (разве что для системы подсветки могут понадобиться батарейки). В микроскопах этого типа используются традиционные окуляры, однако есть отдельные модели, допускающие подключение внешней камеры и вывод изображения на дисплей компьютера. Также отметим, что это единственный принцип, применяемый в стереоскопических моделях (см. «Тип»)

Цифровой. Микроскопы этого типа фактически представляют собой цифровые камеры, дополненные мощной увеличивающей оптикой. Изображение с такой камеры нужно выводить на экран; некоторые модели оснащены собственными дисплеями, другие экранов не имеют, и их нужно подключать к компьютеру/ноутбуку. Преимуществом первой разновидности является независимость от внешнего оборудования, достоинства второго варианта — компактность и сравнительно невысокая стоимость. В то же время стоит отметить, что по степени увеличения большинство цифровых микроскопов уступает оптическим, а для стереоскопического изображения этот принцип не подходит.

Оптико-цифровой. Микроскопы, сочетающие в себе особенности оптических и цифровых моделей (см. соответствующие пункты). От «чисто цифровых» приборов та...кие модели отличаются более продвинутой оптикой, с револьверной головкой и высокой кратностью увеличения; от оптических — встроенной камерой и использованием экрана в роли окуляра (традиционные окуляры в оптико-цифровых моделях не применяются).

Кратность увеличения

Диапазон кратностей увеличения, обеспечиваемый прибором — от минимальной до максимальной.

Кратность микроскопа высчитывается по формуле «кратность окуляра умножить на кратность объектива». Например, 20х объектив с 10х окуляром дадут кратность 10*20 = 200х. Современные микроскопы могут оснащаться револьверными головками на несколько объективов, зум-объективами (см. ниже) и сменными окулярами — так что в большинстве моделей кратность можно регулировать. Это позволяет подстраивать устройство под разные ситуации: когда нужно рассмотреть мелкие детали, используется высокая степень увеличения, а вот для расширения поля зрения кратность нужно уменьшать.

Подробные рекомендации по оптимальным кратностям для разных задач можно найти в специальных источниках. Здесь же отметим, что многие производители идут на хитрость и указывают максимальное значение кратности по степени увеличения, достигаемой с дополнительной линзой Барлоу. Такая линза действительно может дать серьёзный прирост кратности, однако не факт, что изображение при этом получится качественным; подробнее см. «Комплектация».

Револьверная головка

Количество объективов в револьверной головке микроскопа.

Револьверная головка представляет собой круглую насадку с несколькими объективами разной кратности. Поворачивая такую насадку, можно менять используемый в данный момент объектив; а чем больше объективов — тем шире у пользователя выбор при подборе оптимальной кратности микроскопа. С другой стороны, большое количество оптики сказывается на габаритах и цене устройства. В свете этого большинство современных микроскопов имеют 34 объектива — это количество считается оптимальным по соотношению функционала и цены.

Объектив

Зум-объектив. Объектив с переменной кратностью увеличения. Такая оптика позволяет плавно изменять общую кратность микроскопа в определённых пределах, не меняя объектива/окуляра и даже не отрываясь от наблюдений. С другой стороны, зум-объективы сложнее и дороже оптики с постоянной кратностью. Поэтому применяются они в основном в стереоскопических микроскопах (см. «Тип»): при ремонте, сборке и других задачах, для которых применяются такие приборы, возможность плавной подстройки кратности бывает крайне полезной.

— Кратность увеличения. Кратность увеличения, обеспечиваемая объективом. Этот параметр, наряду с кратностью окуляра, влияет на общую степень увеличения прибора (см. выше). Напомним, что немало современных микроскопов имеют револьверные головки с несколькими объективами, что позволяет подстраивать увеличение и ширину поля зрения под ту или иную ситуацию; для таких моделей в данном пункте указывается кратность всех установленных объективов, например, «4х, 10х, 40х». Также стоит сказать, что информация о кратности может содержать также дополнительную маркировку, сообщающую об особенностях объектива. Так, буква s в скобках — например, «40x(s)» — означает, что объектив дополнен пружинным механизмом, за счет чего снижается вероятность раздавить препарат при приближении вплотную. Так называемые иммерсионные объективы, которые «смотрят» на препарат через специальную жидкость, маркируются по типу используемой жидкости — «Oil» (наприм...ер, «10x Oil») или «МИ» для специального масла, «W» или «ВИ» для дистиллированной воды и «Glyc» или «ГИ» для глицерина (последний применяется в основном во флуоресцентной микроскопии). А индекс PH (иногда с цифрой) означает фазовый объектив, предназначенный для соответствующего метода исследования; при этом цифра на объективе должна соответствовать обозначению на другой детали — фазовом конденсоре.

— Ахромат. Одна из разновидностей цветовой коррекции, применяемой в объективах. Необходимость цветовой коррекции обусловлена тем, что свет разных цветов по-разному преломляется линзами, и без дополнительных мер изображение в микроскопе расплывалось бы радужными разводами. Ахроматика — одна из простейших разновидностей цветовой коррекции, в такой оптике скорректированы цветовые искажения по жёлтому и зелёному цвету. Объективы-ахроматы отличаются простотой конструкции и невысокой стоимостью. Правда, качество изображения в них далеко от идеала: чёткое изображение такой объектив даёт только в центре картинки, ширина зоны резкости составляет около трети от общей ширины поля зрения, а по краям изображения могут появляться красно-синие разводы. Впрочем, этого вполне достаточно для общего ознакомления, начального обучения, а нередко — и для более серьёзных задач.

— Планахромат. Улучшенная и доработанная разновидность ахроматических объективов (см. выше). В планахроматах предусматривается дополнительная коррекция кривизны поля, благодаря чему область чётко видимого изображения в таких объективах составляет не менее 2/3 от общей ширины поля зрения, а нередко — и более. Именно такие объективы рекомендуются для серьёзной учёбы и профессионального применения.

— Посадочный диаметр. Размер резьбы, используемой для установки объектива. Больший посадочный диаметр, как правило, означает большую ширину объектива, а значит — более высокую светосилу и лучшее качество изображения. С другой стороны, крупный размер сказывается на габаритах, весе и стоимости оптики. В современных микроскопах в основном встречаются диаметры от 20 до 35 мм. Зная размер резьбы, можно приобретать сменные или запасные объективы для устройства.

Окуляр

Монокуляр. Окуляр с одной линзой, в который можно смотреть только одним глазом. По очевидным причинам используется только в биологических микроскопах (см. «Тип»). Преимуществами монокуляров являются прежде всего меньшие размеры и стоимость, чем у других разновидностей; кроме того, они не требуют подстройки по межзрачковому расстоянию. С другой стороны, постоянно смотреть в окуляр одним глазом утомительно, поэтому данный вариант слабо подходит для ситуаций, когда в микроскоп приходится заглядывать часто и подолгу.

Бинокуляр. Сдвоенный окуляр, в который можно смотреть сразу обоими глазами. Отметим, что такая оптика применяется не только в стереомикроскопах, изначально предназначенных для рассматривания предмета через два объектива (см. «Тип»), но и в биологических микроскопах с одним объективом. Дело в том, что смотреть в оптический прибор двумя глазами значительно удобнее, чем одним, глаза при этом меньше нагружаются и усталость наступает не так быстро. Поэтому для серьёзных задач, связанных с частым использованием микроскопа, оптимальным вариантом являются бинокуляры (или тринокуляры, см. ниже). Обходится такая оптика дороже монокулярной, однако это компенсируется удобством использования.

Тринокуляр. Разновидность бинокуляра (см. соответствующий пункт), дополненная третьим оптическим каналом для специальной камеры-видеоокуляра. Такая камера, как пр...авило, подключается к ПК или ноутбуку; установив её в гнездо для третьего окуляра, можно осуществлять фото- и видеосъёмку, а также выводить изображение в реальном времени на экран компьютера. Одновременно с этим можно смотреть в микроскоп и обычным способом. Устройства с тринокулярами весьма функциональны и универсальны, однако сложны и стоят недёшево.

— LCD-экран. Наличие у микроскопа LCD-экрана, заменяющего традиционный окуляр. К такому прибору не нужно всякий раз наклоняться для просмотра изображения, что бывает очень удобно, если наблюдения нужно совмещать с ведением записей и другими подобными занятиями. Микроскопы подобной конструкции обычно имеют функцию фото- и видеосъёмки, а также различные встроенные инструменты — например, масштабную сетку для оценки размеров видимых объектов, выводящуюся прямо на экран. Кроме того, изображение на экране может видеть не только непосредственный пользователь, но и все, кто находится рядом; такие возможности бывают незаменимы во время учебных занятий, консультаций, презентаций и т. п. С другой стороны, подобные микроскопы получаются громоздкими и дорогими.

— Кратность увеличения. Кратность увеличения, обеспечиваемая окуляром. Этот параметр, наряду с кратностью объектива, влияет на общую кратность увеличения прибора (см. выше). Классическим вариантом для окуляров в микроскопах считается 10х, однако встречаются и более высокие значения. В комплект поставки может входить несколько окуляров, разной кратности — для изменения общей степени увеличения. Встречается обозначение кратности с буквенным индексом, например, WF10x. Это означает, что окуляр имеет расширенное поле зрения (WF — широкое, EWF — экстра-широкое, UWF — сверхширокое).

— Наклон. Угол наклона окуляра указывается относительно горизонтали — и только в тех моделях, где окуляр не является вертикальным и не имеет регулировки по углу наклона (о том и другом см. ниже). Наиболее популярный вариант в подобных моделях — 45°, когда окуляр расположен, по сути, ровно посредине между строго вертикальным и строго горизонтальным положением. Такой наклон достаточно удобен в разных ситуациях — и если пользователь сидит за столом, и если он стоя наклоняется к стоящему на столе микроскопу. Не такой популярный, но все же весьма распространенный вариант — 30°, предполагающий более близкое к горизонтали положение окуляров; такая конструкция оптимально подходит для работы сидя, но вот наклоняться к подобному прибору уже не очень удобно. И наоборот, угол в 60° отлично подходит для работы стоя, но и только; поэтому данный вариант можно встретить очень редко, буквально в единичных моделях.

— Регулируемый наклон. Возможность изменять угол наклона окуляра позволяет подстраивать прибор под конкретные ситуации. Так, для работы сидя за столом лучше подходит небольшой наклон (близкий к горизонтали), а если нужно постоянно наклоняться к микроскопу — угол лучше увеличить, подняв окуляр ближе к вертикали. В то же время регулируемый наклон усложняет конструкцию прибора и увеличивает ее стоимость, притом что на практике реальная потребность в подобном функционале возникает не так часто. Также стоит сказать, что для упрощения конструкции в некоторых моделях наклонным делается весь установленный на основании прибор — включая объектив и предметный столик. Однако такие устройства имеют другой недостаток: наклон предметного столика прямо связан с наклоном окуляра, и если нужно разместить препарат строго горизонтально — то оптику неизбежно придется установить вертикально, без других вариантов. Поэтому регулируемый наклон (во всех вариантах) в наше время встречается достаточно редко.

— Без наклона. Еще более редкий и специфический вариант: окуляр и вся оптическая система в таких моделях расположены строго вертикально. В подобный микроскоп не очень удобно смотреть, даже стоя над рабочим столом, а для сидячего положения такие модели и вовсе практически непригодны. С другой стороны, у этой конструкции есть и свои преимущества. Прежде всего она получается более простой и надежной, чем в аналогах с наклонным окуляром — благодаря отсутствию дополнительных зеркал и призм; а предметный столик в таких устройствах всегда расположен строго горизонтально, что бывает немаловажно при работе с некоторыми препаратами.

— Посадочный диаметр. Номинальный диаметр окуляра, используемого в микроскопе, а также диаметр отверстия в тубусе, предназначенного для установки окуляра. В современных микроскопах используется несколько стандартных диаметров, в частности, 23 и 27 мм. На практике данный параметр необходим прежде всего в том случае, если планируется приобретать запасные или сменные окуляры к микроскопу, либо если «в хозяйстве» уже имеется окуляр, и нужно оценить его совместимость с данной моделью.

— Диоптрическая коррекция. Диапазон диоптрической коррекции, предусмотренный в окуляре. Такая коррекция применяется для того, чтобы близорукий или дальнозоркий человек мог смотреть в микроскоп без очков или контактных линз. В большинстве моделей с данной функцией диапазон коррекции составляет порядка 5 диоптрий в обе стороны; это позволяет использовать микроскоп при невысокой и средней степени близорукости/дальнозоркости.

Препаратоводитель

Наличие препаратоводителя в конструкции предметного столика.

Препаратоводитель представляет собой приспособление для плавного перемещения препаратных стёкол под объективом микроскопа, а также фиксации условных координат отдельных участков препарата. За перемещение отвечают механизмы, позволяющие сдвигать стекло отдельно в продольном и поперечном направлении. Фиксацию координат обеспечивают специальные шкалы с нониусами, точность определения координат может составлять от 0,1 до 0,01 мм.

Данная функция встречается исключительно в биологических микроскопах (см. «Тип»). Её наличие может быть крайне важным для исследований, связанных с высокими кратностями увеличения. Без препаратоводителя стекло пришлось бы перемещать вручную, а поиск определённых участков был бы весьма непростой, а то и невозможной задачей.

Фокусировка

Виды фокусировки (наведения на резкость), предусмотренные в микроскопе. Фокусировка осуществляется за счёт изменения расстояния между рассматриваемым предметом и объективом; виды её могут быть такими:

— Грубая. Данный способ означает наличие одного поворотного регулятора, отвечающего за перемещение объектива или предметного столика. Достоинства подобной конструкции — простота и невысокая стоимость. В то же время фокусировка на высоких кратностях в таких микроскопах является довольно непростой задачей: поворачивать ручку настройки приходится буквально по долям миллиметра.

Грубая / точная. Фокусировка, осуществляемая двумя механическими регуляторами — для предварительного наведения на резкость и для окончательной тонкой подстройки. Такая настройка сама по себе удобнее, чем только грубая (см. выше), а на высоких кратностях она бывает просто незаменимой. С другой стороны, наличие дополнительного регулятора усложняет и удорожает конструкцию, поэтому встречается данный вариант преимущественно в полупрофессиональных и профессиональных микроскопах.

— Ручная. Способ, предполагающий отсутствие механизма фокусировки как такового. Наведение на резкость в таких приборах осуществляется за счёт того, что пользователь вручную перемещает объектив — например, сдвигая его вверх-вниз на вертикальном штативе и фиксируя в нужном положении зажимом, или наклоняя вперёд-назад на поворотном креплении. Данный вариант подходит только д...ля моделей с невысокой кратностью, не требующих особой точности при фокусировке; он встречается преимущественно в цифровых микроскопах без собственного экрана (см. «Принцип работы»), а также портативных моделях (см. соответствующий пункт).

Подсветка

Тип подсветки предметного столика, используемой в микроскопе.

— Светодиодная (LED). Наиболее продвинутая на сегодняшний день разновидность подсветки. Светодиоды дают яркий свет белого цвета с холодной окраской, оптимальный для работы с прозрачными образцами. Такие источники света можно оснащать регуляторами яркости. Кроме того, LED-подсветка чрезвычайно экономична в плане потребления энергии и практически не вырабатывает излишнего тепла. Всё это делает данный вариант подходящим даже для наиболее продвинутых микроскопов.

— Галогенная. До появления светодиодов подобная подсветка была основным вариантом, применявшимся в биологических микроскопах (см. «Тип») среднего и профессионального уровней. Галогенные лампы обеспечивают мощный поток света, при этом яркость подсветки, как правило, можно регулировать; спектр свечения получается достаточно удобным для наблюдений, а нагрев относительно невелик (хотя и больше, чем в светодиодах). По экономичности энергопотребления такое освещение уступает светодиодному, однако превосходит лампы накаливания.

— Лампа накаливания. Наиболее простая и недорогая разновидность подсветки. Собственно, именно невысокая стоимость является основным преимуществом подобных систем. А вот недостатков у ламп накаливания немало. Во-первых, они дают тёплый оттенок свечения, искажающий цветопередачу; для несложных задач это не критично, но вот в серьёзных исследованиях недопустимо. Во-вторых, лампа сильно нагревается, что...может отрицательно повлиять на препарат. В-третьих, такое освещение потребляет довольно много энергии. Как следствие, лампы накаливания встречаются исключительно в недорогих микроскопах начального уровня, и даже среди них они постепенно выходят из употребления.

— Зеркальная. Освещение при помощи зеркала, отражающего свет от окна, потолочной лампы или другого внешнего источника освещения. Из достоинств этого варианта можно назвать простоту, невысокую стоимость, компактность и полную независимость от источников энергии. С другой стороны, подобный микроскоп зависит от внешнего освещения, а настройка зеркала требует определённых навыков и с непривычки может оказаться довольно непростым делом. Поэтому в чистом виде зеркальные системы используются сравнительно редко, однако зеркало может предусматриваться как дополнение к другому источнику освещения, например, галогенной лампе.
National Geographic 40x-640x with Adapter часто сравнивают