КПД
Коэффициент полезного действия, в данном случае — соотношение мощности блока питания (см. «Мощность») к его потребляемой мощности. Чем выше КПД — тем более эффективен блок питания, тем меньше энергии он потребляет от сети при той же выходной мощности и тем дешевле обходится его эксплуатация. КПД может отличаться в зависимости от нагрузки; в характеристиках могут указывать как минимальный КПД, так и его значение на средней нагрузке (50%).
Отметим, что от данного показателя напрямую зависит соответствие тому или иному уровню экономичности 80PLUS (подробнее см. «Сертификат»).
Сертификат
Наличие или отсутствие у блока питания сертификата 80+. Данный сертификат свидетельствует о высокой энергоэффективности: для его получения КПД (см. выше) должен составлять не менее 80 %, причем на разных режимах (20 %, 50 % и 100 % максимальной нагрузки). Существует несколько степеней 80+:
—
80+. Оригинальный вариант сертификата, предполагающий КПД не менее 82 % (не менее 85 % на 50 % загрузки).
—
80+ White. Второе название оригинального сертификата 80+ (см. выше).
—
80+ Bronze — КПД не ниже 85 % (для половинной загрузки — 88 %).
—
80+ Silver — соответственно 87 % (90 % для половинной загрузки).
—
80+ Gold — 89 % (92 % для половинной загрузки)
—
80+ Platinum — 90 % (94 % для половинной загрузки).
—
80+ Titanium — 94 % (96 % для половинной загрузки).
Коэффициент мощности (см. «Тип PFC») при этом должен составлять не ниже 0,9 для низших уровней и не ниже 0,95 для уровня Platinum. Также отметим, что для избыточного питания, применяемого в серверных системах, требования по КПД несколько ниже.
PCI-E 8pin (6+2)
Количество разъемов питания PCI-E формата 8pin (6+2), предусмотренное в конструкции БП.
Дополнительные разъемы питания PCI-E (всех форматов) применяются для дополнительного питания тех видов внутренней периферии, для которой уже недостаточно 75 Вт, подаваемых непосредственно через гнездо PCI-E на материнской плате (характерный пример — видеокарты). В комплектующих для ПК встречается два вида таких разъемов — 6pin, обеспечивающий до 75 Вт дополнительного питания, и 8pin, дающий до 150 Вт. А штекеры 8pin (6+2), применяемые в блоках питания, являются универсальными: они могут работать и с 6-контактным, и с 8-контактным разъемом на плате расширения. Поэтому именно этот тип штекеров является наиболее популярным в современных БП.
Что касается количества, то в продаже можно встретить модели
на 1 разъем PCI-E 8pin (6+2),
на 2 таких разъема,
на 4 разъема, а в отдельных случаях —
на 6 и более. Несколько подобных штекеров могут пригодиться, к примеру, при подключении нескольких видеокарт — либо для мощного производительного видеоадаптера, оснащенного несколькими разъемами дополнительного питания PCI-E.
Система кабелей
Система кабелей, используемая в блоке питания. По этому параметру выделяют
модульные,
полумодульные и не-модульные устройства, вот их особенности:
— Не модульная. Классический вариант конструкции, применявшийся в компьютерных БП с самого начала и не теряющий популярности по сей день. Провода в таких системах имеют несъемную конструкцию, а подключения дополнительных кабелей не предусматривается. В итоге пользователю приходится иметь дело только с теми кабелями, которые предусмотрел производитель, без возможности снять или заменить их (единственные доступные модификации — установка дополнительных аксессуаров вроде удлинителя или разветвителя). Из-за этого подобные БП менее удобны, чем модульные и полумодульные: их провода часто имеют излишнюю длину, а некоторые из них вообще не используются, при этом такое «хозяйство» дополнительно загромождает корпус, ухудшая циркуляцию воздуха и эффективность охлаждения. С другой стороны, эти недостатки можно свести практически к нулю при внимательном подборе БП и аккуратной прокладке проводов; а сами по себе не-модульные системы отличаются надежностью и в то же время невысокой стоимостью. Именно благодаря этим особенностям они наиболее распространены в наше время.
— Модульная. Системы, в которых каждый кабель сделан съемным; для крепления проводов используются специальные гнезда. Благодаря такой конструкции можно оптимально организовать прост
...ранство внутри ПК — например, снять ненужные провода, дабы они не мешали циркуляции воздуха в системном блоке; заменить слишком длинный кабель на провод покороче (или наоборот); поменять кабели местами и т. п. В то же время модульные системы заметно дороже не-модульных, при этом они считаются несколько менее надежными из-за наличия «слабых мест» в виде съемных креплений для кабелей.
— Полумодульная. Своего рода компромисс между описанными выше вариантами: часть проводов в таких БП делается несъемными, часть оснащается модульными креплениями. Это позволяет отчасти совместить достоинства и компенсировать недостатки двух систем: полумодульные БП получаются менее дорогими и более надежными, чем модульные, и в то же время более удобными, чем не-модульные. Как правило, в системах данного типа несъемную конструкцию имеют наиболее важные провода, которые практически гарантированно задействуются при сборке ПК, а второстепенные кабели оснащаются съемными креплениями и могут быть сняты в случае ненадобности. Впрочем, конкретные особенности полумодульного БП стоит уточнять отдельно.Провода в оплетке
Наличие оплетки у комплектных проводов системного блока — у всех или хотя бы у некоторых.
Данная особенность положительно сказывается на надежности, делая провод максимально устойчивым к перегибам, истиранию, сильному нажиму и другим подобным воздействиям; также она дает дополнительную защиту от случайных контактов с острыми предметами (например, при ремонте ПК). Недостатками проводов в оплетке, помимо повышенной стоимости, являются также увеличенная толщина и бОльшая жесткость, чем у аналогичных кабелей в обычной изоляции. Это может создать некоторые сложности при организации пространства внутри системного блока.
+12V1
Максимальный ток, который БП способен выдать на первую линию питания +12V.
Подробнее о линиях питания в целом см. в пункте «+3.3V». Здесь же стоит сказать, что 12 В — это самое популярное напряжение среди компьютерных разъемов питания. Оно применяется почти во всех таких коннекторах (за единичными исключениями), а некоторые штекеры (например, дополнительное питание PCI-E на 6 или 8 разъемов) используют только 12-вольтовые линии — причем именно в формате +12V. А разделение питания +12V на несколько отдельных линий применяется в целях безопасности — дабы снизить ток, идущий по каждому отдельному проводу, и предотвратить таким образом излишнюю нагрузку и перегрев проводки. Впрочем, некоторые производители не уточняют максимальный ток по отдельным линиям +12V и приводят в характеристиках лишь общее значение; в таких случаях это число указывается именно в данном пункте.
Мощность +12V
Максимальная мощность, которую БП способен выдать на линию питания +12V.
Подробнее о линиях питания в целом см. «Максимальные ток и мощность». Здесь же стоит сказать, что 12 В — это самое популярное напряжение среди компьютерных разъемов питания. Оно применяется почти во всех таких коннекторах (за единичными исключениями), а некоторые штекеры (например, дополнительное питание PCI-E на 6 или 8 разъемов) используют только 12-вольтовые линии — причем именно в формате +12V. Так что данный показатель является одной из важнейших характеристик любого БП.
Отметим, что многие БП имеют несколько раздельных линий питания +12V. В таких случаях здесь указывается общая мощность, которая, как правило, делится между линиями поровну.
Безопасность
Схемы защиты, предусмотренные в блоке питания. Помимо описанных выше OVP (защиты от перенапряжения), OPP (защиты от избыточного тока/мощности) и SCP (защиты от короткого замыкания), в современных БП могут предусматриваться такие функции безопасности:
— OCP. OCP в блоках питания следит за током на линиях питания и отключает БП, если потребление становится опасно высоким, чтобы не перегреть провода, разъёмы и силовые элементы внутри самого блока и не «потянуть» за собой комплектующие. В отличие от OPP, которая срабатывает по общей мощности всего блока, OCP чаще ловит локальную проблему на конкретной линии или группе выходов, а в сравнении с SCP это более «ранняя» защита: она реагирует ещё до полноценного короткого замыкания, когда сопротивление не нулевое, но ток уже ушёл в риск. Из живых примеров — неудачный разгон видеокарты, повреждённый кабель питания GPU или редкий, но неприятный случай с перегибом/подплавлением разъёма: OCP выключит блок быстрее, чем успеет появиться запах пластика.
— UVP. UVP контролирует просадку напряжения на выходах блока питания и отключает его, когда значения становятся слишком низкими для стабильной работы железа, чтобы избежать зависаний, ошибок записи на диск и «полуживых» режимов, которые особенно неприятны для материнской платы и накопителей. В паре с OVP эти защиты работают как «рамки»: OVP ловит опасный рост, UVP — опасную просадку, а SIP чаще пытается сгладить саму проблему питания ещё на входе. Типичный пример — перегр...узка слабого БП, плохая сеть или включение мощной техники в доме: вместо нестабильной работы и странных ребутов UVP предпочитает выключить систему предсказуемо.
— OTP. OTP отслеживает температуру внутри блока питания и выключает его, когда нагрев становится критическим, защищая трансформатор, силовые ключи и конденсаторы от ускоренного износа и аварий. Это более «жёсткая» страховка, чем AFC: автоматическая регулировка вентилятора старается не допустить перегрева, а OTP вступает в игру, когда охлаждение уже не справилось — например, если корпус забит пылью, вентилятор остановился, БП стоит в тесном отсеке или ПК долго работает под высокой нагрузкой летом. В реальной жизни OTP нередко спасает в момент, когда пользователь случайно перекрыл приток воздуха или вентилятор начал умирать: вместо дыма и деградации компонентов блок просто отключится.
— SIP. SIP в блоках питания рассчитана на «грязную» сеть: кратковременные скачки, перепады и пусковые броски, которые возникают, когда в доме включается компрессор холодильника, насос, кондиционер или когда сеть нестабильна. По смыслу это ближе к сглаживанию входных проблем, чем к OVP/UVP, которые уже контролируют выход и при опасных значениях просто отключают БП; SIP старается повысить живучесть системы к реальным бытовым просадкам и всплескам, но при этом не заменяет полноценный внешний стабилизатор или хорошую защиту по питанию, если сеть действительно плохая. Типичный пример — частный дом или старый жилфонд: SIP помогает переживать мелкие «пинки» сети без внезапных ребутов.
— NLO (No-Load Operation). Способность блока питания корректно запускаться и работать даже при нулевой или слишком маленькой нагрузке на выходах, без «плавающих» напряжений и нестабильности. В отличие от защит вроде OVP/OCP/SCP, которые реагируют на аварии (перенапряжение, перегрузка, короткое замыкание) и часто отключают БП, NLO про устойчивость режима, когда потребление минимальное или нагрузка временно отсутствует, что снижает риск странных сбоев при тестировании или в энергосберегающих сценариях. На практике NLO полезен, когда блок проверяют на столе без подключённого ПК, когда система стартует с очень малым набором комплектующих, а также когда компьютер большую часть времени простаивает в простое и потребление проседает до «копеечного» уровня.
— AFC. AFC в блоках питания управляет оборотами вентилятора по температуре и нагрузке: на простое он крутится медленнее и тише, а при росте потребления ускоряется, чтобы вовремя вывести тепло. Это не «аварийная» защита вроде OTP, которая выключает блок при перегреве, а профилактика: AFC помогает держать температуру в норме и тем самым косвенно продлевает ресурс компонентов БП. Пример из жизни — ночью в тихой комнате ПК не гудит на низкой нагрузке, а во время игры охлаждение автоматически усиливается, чтобы не довести дело до срабатывания OTP.