КПД
Коэффициент полезного действия, в данном случае — соотношение мощности блока питания (см. «Мощность») к его потребляемой мощности. Чем выше КПД — тем более эффективен блок питания, тем меньше энергии он потребляет от сети при той же выходной мощности и тем дешевле обходится его эксплуатация. КПД может отличаться в зависимости от нагрузки; в характеристиках могут указывать как минимальный КПД, так и его значение на средней нагрузке (50%).
Отметим, что от данного показателя напрямую зависит соответствие тому или иному уровню экономичности 80PLUS (подробнее см. «Сертификат»).
Система охлаждения
—
Активная система охлаждения. Использует вентилятор, который постоянно работает для отвода тепла от внутренних компонентов. В отличие от пассивного охлаждения, активная система обеспечивает лучший теплоотвод и стабильность работы при высоких нагрузках, предотвращая перегрев. Однако создает шум. Для его устранения вентиляторы в таких БП могут иметь динамическое управление скоростью (AFC – Automatic Fan Control), снижая обороты при низком потреблении энергии.
—
Полупассивная. Активные СО с автоматическим отключением вентиялтора в ситуациях, когда нагрузка на блок питания невысока и тепловыделение снижается. Напомним, системы этого типа эффективнее пассивных, однако потребляют дополнительную энергию и создают шум при работе. Соответственно, при небольшой нагрузке, когда интенсивное охлаждение не требуется, вентиляторы разумнее отключить — это дает экономию энергии и снижает уровень шума.
—
Пассивная (радиаторы). По сравнению с вентиляторами радиаторы имеют ряд преимуществ: так, они совершенно не создают шума и не требуют собственного питания (снижая таким образом общее энергопотребление). С другой стороны, они значительно менее эффективны, как следствие — мощность блоков питания с пассивным охлаждением не превышает 600 Вт. Кроме того, стоят такие БП довольно дорого.
Тип подшипника
Подшипник — это деталь между вращающейся осью вентилятора и неподвижным основанием, которая поддерживает ось и снижает трение. В современных вентиляторах встречаются
подшипники скольжения,
качения,
гидродинамический и
магнитного центрирования. Подробней о них:
— Скольжения. Действие таких подшипников основано на прямом контакте между двумя сплошными поверхностями, тщательно отполированными для снижения трения. Подобные приспособления просты, надежны и долговечны, однако эффективность их достаточно невысока — качение, а тем более гидродинамический и магнитный принцип работы обеспечивают значительно меньшее трение.
— Качения. Также называются «шарикоподшипниками», так как «посредниками» между осью вращения и неподвижным основанием являются шарики (реже — цилиндрические ролики), закрепленные в специальном кольце. При вращении оси такие шарики катятся между ней и основанием, за счет чего сила трения получается очень невысокой — заметно ниже, чем в подшипниках скольжения. С другой стороны, конструкция получается более дорогой и сложной, а по надежности она несколько уступает как тем же подшипникам скольжения, так и более продвинутым гидродинамическим приспособлениям. Поэтому, хотя подшипники качения в наше время достаточно широко распространены, однако в целом они встречаются заметно реже упомянутых разновидностей.
...
>
— Гидродинамический. Подшипники этого типа заполнены специальной жидкостью; при вращении она создаёт прослойку, по которой скользит подвижная часть подшипника. Таким образом удаётся избежать непосредственного контакта между твёрдыми поверхностями и значительно снизить трение по сравнению с предыдущими типами. Также такие подшипники тихо работают и весьма надёжны. Из их недостатков можно отметить сравнительно высокую стоимость, однако на практике этот момент нередко оказывается незаметным на фоне цены всей системы. Поэтому данный вариант в наше время чрезвычайно популярен, его можно встретить в системах охлаждения всех уровней — от бюджетных до продвинутых.
— Магнитное центрирование. Подшипники, основанные на принципе магнитной левитации: вращающаяся ось «подвешена» в магнитном поле. Таким образом удаётся (как и в гидродинамических) избежать контакта между твёрдыми поверхностями и ещё больше снизить трение. Считаются наиболее продвинутым типом подшипников, надёжны и бесшумны, однако стоят дорого.Провода в оплетке
Наличие оплетки у комплектных проводов системного блока — у всех или хотя бы у некоторых.
Данная особенность положительно сказывается на надежности, делая провод максимально устойчивым к перегибам, истиранию, сильному нажиму и другим подобным воздействиям; также она дает дополнительную защиту от случайных контактов с острыми предметами (например, при ремонте ПК). Недостатками проводов в оплетке, помимо повышенной стоимости, являются также увеличенная толщина и бОльшая жесткость, чем у аналогичных кабелей в обычной изоляции. Это может создать некоторые сложности при организации пространства внутри системного блока.
Мощность +12V
Максимальная мощность, которую БП способен выдать на линию питания +12V.
Подробнее о линиях питания в целом см. «Максимальные ток и мощность». Здесь же стоит сказать, что 12 В — это самое популярное напряжение среди компьютерных разъемов питания. Оно применяется почти во всех таких коннекторах (за единичными исключениями), а некоторые штекеры (например, дополнительное питание PCI-E на 6 или 8 разъемов) используют только 12-вольтовые линии — причем именно в формате +12V. Так что данный показатель является одной из важнейших характеристик любого БП.
Отметим, что многие БП имеют несколько раздельных линий питания +12V. В таких случаях здесь указывается общая мощность, которая, как правило, делится между линиями поровну.
Мощность -12V
Максимальная мощность, которую БП способен выдать на линию питания -12V.
Подробнее о линиях питания в целом см. «Максимальные ток и мощность». Здесь же отметим, что -12V — достаточно специфический формат, используемый исключительно в штекерах питания для материнских плат — для подачи энергии на отдельные компоненты «материнки», требующие обратной полярности.
Мощность +5Vsb
Максимальная мощность, которую БП способен выдать на линию питания +5Vsb.
Подробнее о линиях питания в целом см. «Максимальные ток и мощность». Здесь же напомним, что линия +5Vsb используется для питания электроники компьютера в режиме ожидания, когда основная и единственная задача системы — среагировать на нажатие кнопки включения. Для этого не требуется высокая мощность, так что данный показатель редко превышает 15 Вт.
Безопасность
Схемы защиты, предусмотренные в блоке питания. Помимо описанных выше OVP (защиты от перенапряжения), OPP (защиты от избыточного тока/мощности) и SCP (защиты от короткого замыкания), в современных БП могут предусматриваться такие функции безопасности:
— OCP. OCP в блоках питания следит за током на линиях питания и отключает БП, если потребление становится опасно высоким, чтобы не перегреть провода, разъёмы и силовые элементы внутри самого блока и не «потянуть» за собой комплектующие. В отличие от OPP, которая срабатывает по общей мощности всего блока, OCP чаще ловит локальную проблему на конкретной линии или группе выходов, а в сравнении с SCP это более «ранняя» защита: она реагирует ещё до полноценного короткого замыкания, когда сопротивление не нулевое, но ток уже ушёл в риск. Из живых примеров — неудачный разгон видеокарты, повреждённый кабель питания GPU или редкий, но неприятный случай с перегибом/подплавлением разъёма: OCP выключит блок быстрее, чем успеет появиться запах пластика.
— UVP. UVP контролирует просадку напряжения на выходах блока питания и отключает его, когда значения становятся слишком низкими для стабильной работы железа, чтобы избежать зависаний, ошибок записи на диск и «полуживых» режимов, которые особенно неприятны для материнской платы и накопителей. В паре с OVP эти защиты работают как «рамки»: OVP ловит опасный рост, UVP — опасную просадку, а SIP чаще пытается сгладить саму проблему питания ещё на входе. Типичный пример — перегр...узка слабого БП, плохая сеть или включение мощной техники в доме: вместо нестабильной работы и странных ребутов UVP предпочитает выключить систему предсказуемо.
— OTP. OTP отслеживает температуру внутри блока питания и выключает его, когда нагрев становится критическим, защищая трансформатор, силовые ключи и конденсаторы от ускоренного износа и аварий. Это более «жёсткая» страховка, чем AFC: автоматическая регулировка вентилятора старается не допустить перегрева, а OTP вступает в игру, когда охлаждение уже не справилось — например, если корпус забит пылью, вентилятор остановился, БП стоит в тесном отсеке или ПК долго работает под высокой нагрузкой летом. В реальной жизни OTP нередко спасает в момент, когда пользователь случайно перекрыл приток воздуха или вентилятор начал умирать: вместо дыма и деградации компонентов блок просто отключится.
— SIP. SIP в блоках питания рассчитана на «грязную» сеть: кратковременные скачки, перепады и пусковые броски, которые возникают, когда в доме включается компрессор холодильника, насос, кондиционер или когда сеть нестабильна. По смыслу это ближе к сглаживанию входных проблем, чем к OVP/UVP, которые уже контролируют выход и при опасных значениях просто отключают БП; SIP старается повысить живучесть системы к реальным бытовым просадкам и всплескам, но при этом не заменяет полноценный внешний стабилизатор или хорошую защиту по питанию, если сеть действительно плохая. Типичный пример — частный дом или старый жилфонд: SIP помогает переживать мелкие «пинки» сети без внезапных ребутов.
— NLO (No-Load Operation). Способность блока питания корректно запускаться и работать даже при нулевой или слишком маленькой нагрузке на выходах, без «плавающих» напряжений и нестабильности. В отличие от защит вроде OVP/OCP/SCP, которые реагируют на аварии (перенапряжение, перегрузка, короткое замыкание) и часто отключают БП, NLO про устойчивость режима, когда потребление минимальное или нагрузка временно отсутствует, что снижает риск странных сбоев при тестировании или в энергосберегающих сценариях. На практике NLO полезен, когда блок проверяют на столе без подключённого ПК, когда система стартует с очень малым набором комплектующих, а также когда компьютер большую часть времени простаивает в простое и потребление проседает до «копеечного» уровня.
— AFC. AFC в блоках питания управляет оборотами вентилятора по температуре и нагрузке: на простое он крутится медленнее и тише, а при росте потребления ускоряется, чтобы вовремя вывести тепло. Это не «аварийная» защита вроде OTP, которая выключает блок при перегреве, а профилактика: AFC помогает держать температуру в норме и тем самым косвенно продлевает ресурс компонентов БП. Пример из жизни — ночью в тихой комнате ПК не гудит на низкой нагрузке, а во время игры охлаждение автоматически усиливается, чтобы не довести дело до срабатывания OTP.