Тёмная версия
Казахстан
Каталог   /   Компьютерная техника   /   Комплектующие   /   Системы охлаждения

Сравнение ARCTIC Freezer 33 Plus vs Enermax ETS-T40F-RF

Добавить в сравнение
ARCTIC Freezer 33 Plus
Enermax ETS-T40F-RF
ARCTIC Freezer 33 PlusEnermax ETS-T40F-RF
от 10 995 тг.
Товар устарел
от 24 885 тг.
Товар устарел
Отзывы
0
0
0
2
Главное
Тихий и долговечный 14-см вентилятор. Теплоотвод 200 Вт. Не мешает установке модулей ОЗУ.
Основное
Назначениедля процессорадля процессора
Типактивный кулерактивный кулер
Выдув воздушного потокавбок (рассеивание)вбок (рассеивание)
Максимальный TDP160 Вт200 Вт
Вентилятор
Кол-во вентиляторов2 шт1 шт
Диаметр вентилятора120 мм140 мм
Тип подшипникагидродинамическиймагнитное центрирование
Максимальные обороты1350 об/мин1200 об/мин
Регулятор оборотовавто (PWM)авто (PWM)
Макс. воздушный поток65.56 CFM
Наработка на отказ160 тыс. ч
Возможность замены
Уровень шума19 дБ
Источник питания4-pin4-pin
Радиатор
Тепловых трубок4 шт4 шт
Контакт теплотрубокпрямой
Материал радиатораалюминий/медьалюминий/медь
Материал подложкиалюминий
Socket
 
AMD AM4
AMD TR4/TRX4
 
Intel 1150
Intel 1155/1156
 
Intel 2011 / 2011 v3
Intel 2066
Intel 1151 / 1151 v2
Intel 1200
AMD AM2/AM3/FM1/FM2
 
 
Intel 775
Intel 1150
Intel 1155/1156
Intel 1366
Intel 2011 / 2011 v3
Intel 2066
Intel 1151 / 1151 v2
Intel 1200
Общее
Тип креплениядвусторонний (backplate)двусторонний (backplate)
Габариты123x102x150 мм126x40x162 мм
Высота150 мм162 мм
Вес752 г460 г
Дата добавления на E-Katalogапрель 2017февраль 2016

Максимальный TDP

Максимальный TDP, обеспечиваемый системой охлаждения. Отметим, что данный параметр указывается только для решений, оснащенных радиаторами (см. «Тип»); для отдельно выполненных вентиляторов эффективность определяется другими параметрами, прежде всего значениями воздушного потока (см. выше).

TDP можно описать как количество тепла, которое система охлаждения способна отвести от обслуживаемого компонента. Соответственно, для нормальной работы всей системы нужно, чтобы TDP системы охлаждения был не ниже тепловыделения этого компонента (данные по тепловыделению обычно указываются в подробных характеристиках комплектующих). А лучше всего подбирать охладители с запасом по мощности хотя бы в 20 – 25 % — это даст дополнительную гарантию на случай форсированных режимов работы и нештатных ситуаций (в том числе засорения корпуса и снижения эффективности воздухообмена).

Что касается конкретных чисел, то наиболее скромные современные системы охлаждения обеспечивают TDP до 100 Вт, наиболее продвинутые — до 250 Вт и даже выше.

Кол-во вентиляторов

Количество вентиляторов в конструкции системы охлаждения. Большее количество вентиляторов обеспечивает более высокую эффективность (при прочих равных); с другой стороны, габариты и шум, производимый при работе, также возрастают соответственно. Кроме того, отметим, что при прочих равных меньшее количество крупных вентиляторов считается более продвинутым вариантом, чем большое количество маленьких; подробнее см. «Диаметр вентилятора».

Диаметр вентилятора

Диаметр вентилятора (вентиляторов), используемых в системе охлаждения.

В целом более крупные вентиляторы считаются более продвинутыми, чем небольшие: они позволяют создать мощный поток воздуха при сравнительно невысоких оборотах и небольшом уровне шума. С другой стороны, крупный диаметр означает большие габариты, вес и цену. Что касается конкретных цифр, то модели на 40 мм и 60 мм считаются миниатюрными, 80 мм и 92 мм — средними, 120 мм и 135/140 мм — крупными, а в самых мощных корпусных системах встречаются даже вентиляторы на 200 мм.

Тип подшипника

Тип подшипника, используемого в вентиляторе (вентиляторах) системы охлаждения.

Подшипник — это деталь между вращающейся осью вентилятора и неподвижным основанием, которая поддерживает ось и снижает трение. В современных вентиляторах встречаются такие типы подшипников:

Скольжения. Действие таких подшипников основано на прямом контакте между двумя сплошными поверхностями, тщательно отполированными для снижения трения. Подобные приспособления просты, надежны и долговечны, однако эффективность их достаточно невысока — качение, а тем более гидродинамический и магнитный принцип работы (см. ниже) обеспечивают значительно меньшее трение.

Качения. Также называются «шарикоподшипниками», так как «посредниками» между осью вращения и неподвижным основанием являются шарики (реже — цилиндрические ролики), закрепленные в специальном кольце. При вращении оси такие шарики катятся между ней и основанием, за счет чего сила трения получается очень невысокой — заметно ниже, чем в подшипниках скольжения. С другой стороны, конструкция получается более дорогой и сложной, а по надежности она несколько уступает как тем же подшипникам скольжения, так и более продвинутым гидродинамическим приспособлениям (см. ниже). Поэтому, хотя подшипники качения в наше время достаточно широко распространены, однако в целом они встречаются заметно реже упомянутых разновидностей.

Гидродинамический. Подшипники этого типа заполнены специальной жидкостью; при вращении она создаёт прослойку, по которой скользит подвижная часть подшипника. Таким образом удаётся избежать непосредственного контакта между твёрдыми поверхностями и значительно снизить трение по сравнению с предыдущими типами. Также такие подшипники тихо работают и весьма надёжны. Из их недостатков можно отметить сравнительно высокую стоимость, однако на практике этот момент нередко оказывается незаметным на фоне цены всей системы. Поэтому данный вариант в наше время чрезвычайно популярен, его можно встретить в системах охлаждения всех уровней — от бюджетных до продвинутых.

Магнитное центрирование. Подшипники, основанные на принципе магнитной левитации: вращающаяся ось «подвешена» в магнитном поле. Таким образом удаётся (как и в гидродинамических) избежать контакта между твёрдыми поверхностями и ещё больше снизить трение. Считаются наиболее продвинутым типом подшипников, надёжны и бесшумны, однако стоят дорого.

Максимальные обороты

Наибольшие обороты, на которых способен работать вентилятор системы охлаждения; для моделей без регулятора оборотов (см. ниже) в данном пункте указывается штатная скорость вращения. В самых «медленных» современных вентиляторах максимальная скорость не превышает 1000 об/мин, в самых «быстрых» может составлять до 2500 об/мин и даже более .

Отметим, что данный параметр плотно связан с диаметром вентилятора (см. выше): чем меньше диаметр, тем выше должны быть обороты для достижения нужных значений воздушного потока. При этом скорость вращения напрямую влияет на уровень шума и вибраций. Поэтому считается, что нужный объем воздуха лучше всего обеспечивать крупными и сравнительно «медленными» вентиляторами; а «быстрые» небольшие модели имеет смысл применять там, где компактность имеет решающее значение. Если же сравнивать по скорости модели одинакового размера, то более высокие обороты положительно сказываются на производительности, однако повышают не только уровень шума, но также цену и энергопотребление.

Макс. воздушный поток

Максимальный воздушный поток, который может создать вентилятор системы охлаждения; измеряется в CFM — кубических футах в минуту.

Чем выше число CFM — тем эффективнее вентилятор. С другой стороны, высокая производительность требует либо большого диаметра (что сказывается на габаритах и стоимости), либо высокой скорости (а она повышает уровень шума и вибраций). Поэтому при выборе имеет смысл не гнаться за максимальным воздушным потоком, а воспользоваться специальными формулами, позволяющими рассчитать необходимое число CFM в зависимости от типа и мощности охлаждаемого компонента и других параметров. Такие формулы можно найти в специальных источниках. Что же касается конкретных чисел, то в наиболее скромных системах производительность не превышает 30 CFM, а в наиболее мощных может составлять свыше 80 CFM.

Также стоит учитывать, что фактическое значение воздушного потока на наибольших оборотах обычно ниже заявленного максимального; подробнее см. «Статическое давление».

Наработка на отказ

Общее время, которое вентилятор системы охлаждения способен гарантированно проработать до выхода из строя. Отметим, что при исчерпании этого времени устройство не обязательно сломается — многие современные вентиляторы имеют значительный запас прочности и способны проработать ещё какой-то период. В то же время оценивать общую долговечность системы охлаждения стоит именно по данному параметру.

Уровень шума

Стандартный уровень шума, создаваемого системой охлаждения при работе. Обычно в данном пункте указывается максимальный шум при штатном режиме работы, без перегрузок и прочего «экстрима».

Отметим, что уровень шума обозначается в децибелах, а это нелинейная величина. Так что оценивать фактическую громкость проще всего по сравнительных таблицам. Вот такая таблица для значений, встречающихся в современных системах охлаждения:

20 дБ — еле слышимый звук (тихий шёпот человека на расстоянии около 1 м, звуковой фон на открытом поле за городом в безветренную погоду);
25 дБ — очень тихо (обычный шёпот на расстоянии 1 м);
30 дБ — тихо (настенные часы). Именно такой шум по санитарным нормам является максимально допустимым для постоянных источников звука в ночное время (с 23.00 до 7.00). Это значит, что если компьютером планируется сидеть ночью — желательно, чтобы громкость системы охлаждения не превышала данного значения.
35 дБ — разговор вполголоса, звуковой фон в тихой библиотеке;
40 дБ — разговор, сравнительно негромкий, но уже в полный голос. Максимально допустимый по санитарным нормам уровень шума для жилых помещений в дневное время, с 7.00 до 23.00. Впрочем, даже самые шумные системы охлаждения обычно не дотягивают до данного показателя, максимум для подобной техники составляет около 38 – 39 дБ.

Контакт теплотрубок

Тип контакта между теплотрубками, предусмотренными в радиаторе системы охлаждения, и охлаждаемыми компонентами (обычно CPU). Подробнее о теплотрубках см. выше, а виды контакта могут быть следующими:

Непрямой. Классический вариант конструкции: тепловые трубки проходят через металлическую (обычно алюминиевую) подошву, которая непосредственно прилегает к поверхности чипа. Достоинством такого контакта является максимально равномерное распределение тепла между трубками, причем независимо от физического размера самого чипа (главное, чтобы он не был крупнее подошвы). В то же время дополнительная деталь между процессором и трубками неизбежно увеличивает тепловое сопротивление и несколько снижает общую эффективность охлаждения. Во многих системах, особенно высококлассных, этот недостаток компенсируется различными конструктивными решениями (прежде всего максимально плотным соединением трубок с подошвой), однако это, в свою очередь, влияет на стоимость.

Прямой. При прямом контакте тепловые трубки прилегают непосредственно к охлаждаемому чипу, без дополнительной подошвы; для этого поверхность трубок с нужной стороны стачивается до плоскости. Благодаря отсутствию промежуточных деталей тепловое сопротивление в местах прилегания трубок получается минимальным, и в то же время сама конструкция радиатора оказывается более простой и недорогой, чем при непрямом контакте. С другой стороны, между тепловым...и трубками имеются зазоры, иногда весьма значительные — в результате поверхность обслуживаемого чипа охлаждается неравномерно. Это отчасти компенсируется наличием подложки (в данном случае она заполняет эти промежутки) и применением термопасты, однако по равномерности отвода тепла прямой контакт все равно неизбежно уступает непрямому. Поэтому данный вариант встречается преимущественно в недорогих кулерах, хотя может применяться и в достаточно производительных решениях.
Enermax ETS-T40F-RF часто сравнивают