Тёмная версия
Казахстан
Каталог   /   Климат, отопление и водоснабжение   /   Отопление и котлы   /   Отопительные котлы

Сравнение STROPUVA S20 I 20 кВт vs STROPUVA S20 U 20 кВт

Добавить в сравнение
STROPUVA S20 I 20 кВт
STROPUVA S20 U 20 кВт
STROPUVA S20 I 20 кВтSTROPUVA S20 U 20 кВт
от 527 568 тг.
Товар устарел
от 460 755 тг.
Товар устарел
Главное
Программатор и центробежный вентилятор
Источник энергиитвердотопливныйтвердотопливный
Установканапольныйнапольный
Типодноконтурный (только отопление)одноконтурный (только отопление)
Площадь отопления160 м²150 м²
Длительного горения
Технические х-ки
Полезная мощность20 кВт20 кВт
Источник питания230 Вавтономная работа
Мин. t теплоносителя40 °С
Макс. t теплоносителя85 °С85 °С
Макс. давление в контуре отопления2 бар2 бар
Потребительские х-ки
Циркуляционный насос
Характеристики котла
КПД92 %91.6 %
Камера сгоранияоткрытая (дымоходный)открытая (дымоходный)
Диаметр дымохода180 мм160 мм
Производительность теплоносителя500 л/ч
Теплообменникстальной
Х-ки подключаемых труб
Вход в систему отопления1 1/4"1 1/4"
Возврат из системы отопления1 1/4"1 1/4"
Безопасность
Системы защиты
перегрев воды
 
Общее
Габариты (ВхШхГ)2100x560x560 мм2100x560x560 мм
Вес246 кг246 кг
Дата добавления на E-Katalogоктябрь 2017август 2011

Площадь отопления

Весьма условный параметр, который слегка характеризует предназначение по размеру помещения. А в зависимости от высоты потолков, планировки, конструкции строения и оснащения реальные значения могут значительно отличаться. Тем не менее данный пункт представляет собой максимально рекомендуемую площадь помещения, которую способен эффективно обогреть котёл. Однако стоит учесть, что разные строения имеют разные теплоизоляционные свойства и современные постройки куда «теплее», чем 30-летние и тем более 50-летние дома. Соответственно данный пункт больше носит справочный характер и не позволяет в полной мере оценить реальную отапливаемую площадь. Существует формула, по которой можно вывести максимальную площадь обогрева, зная полезную мощность котла и климатические условия, в которых он будет применяться; подробнее об этом см. «Полезная мощность». В нашем же случае площадь отопления рассчитывается по формуле «мощность котла умноженная на 8», что ориентировочно равноценно использованию в домах, которым не один десяток лет.

Источник питания

Тип электрического питания, необходимого для нормальной работы котла. Электропитание может потребоваться не только для электрических моделей, но и для других видов котлов (см. «Источник питания») — в частности, для работы управляющей автоматики. Варианты подключения могут быть такими:

230 В. Работа от обычной бытовой сети напряжением 230 В. При этом модели с потребляемой мощностью до 3,5 кВт могут подключаться в обычную розетку, а вот для более «прожорливых» устройств требуется подключение напрямую к щитку. Многие из электрических котлов с подобным подключением допускают также работу от 400 В (см. ниже).

400 В. Работа от трехфазной сети напряжением 400 В. Такое питание подходит для котлов с любой потребляемой мощностью, однако встречается не так часто, как 230 В: в частности, в жилом помещении с ним могут возникнуть сложности. Поэтому данный вариант предусматривается в основном в устройствах высокой мощности, для которых питание от 230 В не подходит в принципе.

— Автономная работа. Работа в полностью автономном режиме, без подключения электричества. Такой формат работы встречается во всех котлах, не использующих электрического нагрева (см. «Источник энергии»), за исключением чисто жидкотопливных — в них электричество необходимо для работы систем подачи топлива.

Мин. t теплоносителя

Минимальная температура теплоносителя, обеспечиваемая котлом при включении его в режиме отопления.

КПД

Коэффициент полезного действия котла — основной показатель, характеризующий эффективность его работы.

Для электрических моделей (см. «Источник энергии») этот показатель высчитывают как соотношение полезной мощности к потребляемой; в таких моделях не редкостью являются показатели в 98 – 99 %. Для котлов на сгораемом топливе КПД — это соотношение количества тепла, непосредственно передаваемого теплоносителю, к общему количеству тепла, выделяемому при сгорании. В таких устройствах эффективность ниже, чем в электрических, для них хорошим считается показатель более чем в 90 %. Исключение представляют собой конденсационные котлы (см. соответствующий пункт), в которых КПД может быть даже выше 100 %. Никакого нарушения законов физики здесь не происходит, это своего рода рекламная хитрость: при подсчетах КПД используется не совсем корректная методика, не учитывающая энергии, затраченной на образование водяного пара. Тем не менее, формально все верно: котел выдает на теплоноситель больше тепловой энергии, чем выделяется при сгорании топлива, т. к. к энергии сгорания добавляется энергия конденсации.

Диаметр дымохода

Диаметр трубы, по которой из камеры сгорания отводятся продукты сгорания.

В котлах с закрытой камерой сгорания часто используется т.н. коаксиальный дымоход, состоящий из двух труб, вложенных одна в другую. При этом по внутренней трубе из камеры сгорания отводятся продукты сгорания, а по промежутку между внутренней и внешней подаётся воздух. Для таких дымоходов диаметр обычно указывается в виде двух цифр — диаметра внутренней и внешней трубы соответственно. Самыми популярными значениями считаются 60/100, 80/80 и 80/125. Классически же дымоход (не коаксиальный) может быть 100, 110, 125, 130, 140, 150, 160, 180 и 200 мм.

Производительность теплоносителя

Количество теплоносителя, проходящего через теплообменник котла за единицу времени. Оптимальной считается такая производительность, при которой за час через теплообменник проходит три полных объёма всей системы отопления.

Теплообменник

Материал первичного теплообменника, в котором тепловая энергия от горячих продуктов сгорания передаётся теплоносителю. От материала изготовления теплообменника напрямую зависят КПД котла, скорость нагрева и срок службы агрегата.

Медный. Медь — материал с наилучшими теплоотдающими характеристиками и высокой устойчивостью к коррозии. Она быстро нагревается, что позволяет экономить энергоресурсы при работе отопительного котла, имеет низкий коэффициент шероховатости, отличается длительным эксплуатационным ресурсом. Единственный недостаток этого металла — высокая стоимость. Медные теплообменники устанавливаются на борту оборудования крепкого среднего уровня и высшего сорта.

Алюминиевый. Алюминий в качестве материала изготовления теплообменника характеризуется отличной теплопроводностью, длительным сроком службы, к тому же он стоит дешевле меди. Для удешевления производства в медных теплообменниках стараются уменьшать толщину стенок. С алюминием этого делать не нужно.

Чугунный. Котлы с чугунным теплообменником долго нагреваются и медленно остывают, длительное время удерживая тепло после прекращения нагрева. Также чугун примечателен высокой теплоёмкостью и низкой подверженностью к коррозии. Срок службы чугунного агрегата может составить и 30, и 50 лет. Обратная сторона медали — огромные массогабаритные показ...атели отопительного оборудования, из-за чего котлы с чугунным теплообменником выпускаются преимущественно в напольной компоновке. В придачу чугун плохо переносит резкие перепады температур — они могут вызвать появление трещин.

Стальной. Стальные теплообменники в отопительных котлах получили наибольшее распространение. Сталь обладает сочетанием высокой пластичности и прочности при воздействии высоких температур, недорого стоит, легко поддаётся обработке на производственных этапах. Однако теплообменники из стали подвержены коррозии. Как результат — они не столь долговечны.

Из нержавеющей стали. Теплообменники из нержавеющей стали — «редкие птицы» в отопительных котлах, что объясняется дороговизной применения этого материала. Зато они сочетают в себе преимущества как чугуна, так и стали. Нержавейка проявляет высокую коррозионную стойкость, невосприимчивость к термоударам, малую инертность, имеет длительный эксплуатационный ресурс.

Системы защиты

Падение давления газа. Эта система защиты обеспечивает отключение котла в случае критического падения давления газа, недостаточного для нормального функционирования горелки. В случае такого падения закрывается и блокируется клапан, подающий газ на горелку. После восстановлении давления газа он также остаётся закрытым, открывать его и возобновлять подачу газа необходимо вручную.

Перегрев воды. Температурный датчик, автоматически выключающий котёл при критическом превышении температуры теплоносителя в системе.

Погасание пламени. Защита от погасания пламени основана на датчике, который отслеживает горение газа и автоматически прекращает его подачу в случае погасания горелки. Это предотвращает заполнение помещения газом и возможные трагические последствия этого.

Отсутствие тяги. В котлах с открытой камерой сгорания для сохранения нормальных условий в помещении, где установлен такой котёл, необходим постоянный отвод продуктов сгорания в атмосферу. Отсутствие нормальной тяги в дымоходе может привести к накоплению продуктов сгорания в помещении. Система защиты от отсутствия тяги предотвращает это, автоматически отключая котёл при обнаружении выхода продуктов сгорания за пределы дымохода.

Отключение электроэнергии. Большинство современных котлов имеют электронную систему управления; кроме того, многие элементы конструкции (насосы, клапаны, вентиляторы и т.п.) тоже приводятся в действие за счёт электричества. Таким образом, отключение электропитания при работе котла неизбежно приведёт к нештатному режиму его работы, что чревато поломками и даже авариями. Для предотвращения подобных случаев устанавливается система защиты от отключения электроэнергии, которая полностью останавливает работу котла в случае отключения электропитания. При возобновлении подачи электричества котёл, как правило, необходимо перезапустить вручную.

Нарушение циркуляции воды.... Эта система защиты контролирует нормальное движение теплоносителя по контуру отопления. Нарушение циркуляции может привести к перегреву отдельных элементов котла и его повреждению. Во избежание этого при нарушении циркуляции система отключает насос и перекрывает подачу газа в горелку.

Замерзания жидкости в контуре. Система, контролирующая температуру в контуре отопления. Замерзание жидкости в контуре нарушает нормальную работу отопления, что может в лучшем случае потребовать прогрева труб, а в худшем — привести к повреждению системы (разрывам). Во избежание подобного при падении температуры теплоносителя ниже 5 °С разжигается горелка, активируется циркуляционный насос и контур прогревается до достижения температуры порядка 35 °С — таким образом, предотвращается образование в трубах льда.