Тёмная версия
Казахстан
Каталог   /   Фототехника   /   Оптические приборы   /   Телескопы

Сравнение Konus Konustart-700 vs Konus Konuspace-7

Добавить в сравнение
Konus Konustart-700
Konus Konuspace-7
Konus Konustart-700Konus Konuspace-7
Сравнить цены 1
от 337 053 тг.
Товар устарел
ТОП продавцы
нет в продаже
Конструкциялинзовый (рефракторы)линзовый (рефракторы)
Тип монтировкиазимутальнаяэкваториальная
Характеристики
Диаметр объектива60 мм60 мм
Фокусное расстояние700 мм900 мм
Макс. полезное увеличение120 x120 x
Макс. разрешающее увеличение90 x90 x
Мин. увеличение9 x9 x
Светосила1/11.71/15
Проницающая способность11.4 зв.вел11.4 зв.вел
Разрешающая способность (Dawes)1.9 угл.сек1.9 угл.сек
Разрешающая способность (Rayleigh)2.33 угл.сек2.33 угл.сек
Дополнительно
Искательс точечной наводкой (LED)оптический
Фокусерреечныйреечный
Окуляры20 мм, 8 мм20 мм, 8 мм
Посадочный диаметр окуляра1.25 "0.96 "
Линза Барлоу2 х
Оборачивающая линза1.5 х
Диагональное зеркало
Общее
Крепление трубыкрепежные винты
Высота штатива116 см116 см
Общий вес2.6 кг
Дата добавления на E-Katalogмарт 2015март 2015

Тип монтировки

Тип монтировки, которой оснащен телескоп.

Монтировка — это механический узел, с помощью которого телескоп крепится к штативу или ( в отдельных случаях) устанавливается прямо на землю. Помимо крепления, этот узел отвечает также за наведение оптики в определенную точку неба. Наибольшей популярностью в наше время пользуются азимутальные приспособления в разных вариациях — AZ1, AZ2, AZ3, а также в виде так называемой монтировки Добсона. Экваториальные механизмы разных моделей (EQ1, EQ2, EQ3, EQ4, EQ5) заметно сложнее и дороже, зато и возможностей дают больше. Встречаются системы, сочетающие сразу оба этих типа монтировок — так называемые азимутально-экваториальные. И, наконец, отдельные телескопы и вовсе поставляются без монтировки. Вот более подробное описание этих вариантов:

— Азимутальная. Полное название — «альт-азимутальная». Традиционно имеет две оси поворота телескопа — одну для наведения по высоте, вторую по азимуту. Разные модели таких монтировок различаются по дополнительным возможностям управления:
  • AZ1. Не имеют системы точного движения. ...i>AZ2. Оснащены системой точного движения по вертикали (вокруг горизонтальной оси).
  • AZ3. Оснащены системами точного движения по обеим осям.
В любом случае вторая ось (азимутальная) в таких системах всегда располагается вертикально, вне зависимости от географического положения телескопа; в этом и состоит ключевое отличие от описанных ниже экваториальных монтировок. В целом азимутальные механизмы достаточно просты и недороги сами по себе, при этом вполне удобны и практичны, благодаря чему именно данный вариант пользуется наибольшей популярностью в наше время. Кроме того, они идеально подходят для наблюдений за наземными объектами. Ключевым недостатком данного варианта является слабая пригодность к непрерывному «сопровождению» небесных тел (движущихся по небосводу вследствие вращения Земли). Если в правильно настроенном экваториальном механизме для этого нужно поворачивать телескоп всего по одной оси, то в азимутальном нужно задействовать обе оси, причем неравномерно. Ситуацию можно решить при помощи системы автослежения, но эта функция заметно влияет на цену всего прибора. И даже ее наличие не гарантирует, что телескоп подойдет для астрофотографии на длительных выдержках — ведь при таком использовании нужно обеспечивать не только точное движение по каждой отдельной оси, но еще поправку на поворот изображения в кадре (что предусматривается далеко не в каждой системе автослежения и еще более увеличивает цену).

— Добсона. Специфическая разновидность описанных выше азимутальных монтировок, применяемая почти исключительно в рефлекторах. Также предусматривает две оси вращения — горизонтальную и вертикальную. Ключевой особенностью монтировки Добсона является то, что она не рассчитана на штатив и устанавливается прямо на землю или другую ровную поверхность; для этого в конструкции предусматривается широкое массивное основание. Подобные системы отлично подходят для телескопов Ньютона, у которых окуляр располагается в передней части: благодаря низкому расположению тубуса на монтировке сам окуляр оказывается на достаточно удобной высоте. Также к преимуществам «добсонов» можно отнести простоту, невысокую стоимость и в то же время хорошую надежность, делающую их пригодными даже для крупных и тяжелых телескопов. Из недостатков нужно отметить слабую совместимость с неровными поверхностями, особенно твердыми, вроде сплошной скалы (тогда как штативы, используемые с другими типами монтировок, этого недостатка лишены).

— Экваториальная. Монтировки этого типа позволяют синхронизировать движение телескопа с движением небесных тел по небосводу, возникающим из-за вращения Земли. Условную вертикальную ось, отвечающую за поворот телескопа из стороны в сторону, в таких механизмах называют осью прямого восхождения (R.A.), а горизонтальную (для наведения по условной вертикали) — осью склонений (Dec.). Перед использованием экваториальная монтировка настраивается так, чтобы ось прямого восхождения была направлена на «полюс мира», параллельно оси вращения Земли («оси мира»); конкретный наклон относительно вертикали зависит от географической широты места наблюдений. Такой формат работы заметно усложняет как конструкцию самой монтировки, так и процедуру ее установки. С другой стороны, экваториальные системы идеально подходят для длительного «сопровождения» астрономических объектов: чтобы компенсировать движение небесного тела из-за вращения Земли и удерживать цель в поле зрения, достаточно вращать телескоп вокруг оси R.A. вправо (по часовой стрелке), причем с четко определенной скоростью — 15° в час, независимо от положения объекта по вертикали. Это делает подобные конструкции идеальным вариантом для астрофотографии — в том числе объектов дальнего космоса, для которых требуются длительные выдержки. Фактически для этого даже не нужна полноценная система автослежения — достаточно сравнительно простого часового механизма, вращающего телескоп вокруг оси прямого восхождения. Обратной стороной этих преимуществ, помимо упомянутой сложности и высокой стоимости, является слабая пригодность для крупных тяжелых телескопов — с увеличением веса прибора вес подходящей экваториальной системы увеличивается еще быстрее.
Что касается разных моделей подобных монтировок, то они маркируются буквенно-цифровым индексом, от EQ1 до EQ5. В целом чем больше число в обозначении — тем крупнее и тяжелее сама конструкция (включая треногу, если она поставляется в комплекте), тем хуже она подходит для перемещения с места на место, однако тем лучше гасит вибрации и сотрясения. А вот ограничения по весу телескопа с моделью экваториальной монтировки напрямую не связаны.

— Азимутально-экваториальная. Механизмы, сочетающие в себе сразу два типа монтировок. Выглядит это так: на штатив установлена азимутальная система, а на ней — экваториальная, в которой уже крепится телескоп. Подобная конструкция позволяет использовать возможности обеих типов монтировки. Так, азимутальный механизм вполне подходит для наблюдений за крупными небесными телами ближнего космоса (Луна, планеты) и обширными участками неба (такими, как созвездия), при этом он не требует сложной предварительной настройки. А для астрофотосъемки или для рассматривания объектов дальнего космоса на больших увеличениях удобнее использовать экваториальную систему. Однако на практике подобная универсальность требуется крайне редко, притом что сочетание двух типов монтировок усложняет конструкцию, увеличивает ее стоимость и снижает надежность. Так что этот вариант можно встретить в единичных моделях телескопов.

— Без монтировки. Полное отсутствие монтировочной системы в комплекте не позволяет применять телескоп «из коробки». Тем не менее, оно бывает оптимальным вариантом в некоторых случаях. Первый — если пользователь хочет выбрать монтировку на свое усмотрение, не полагаясь на решение производителя, или даже собрать ее самостоятельно (так, довольно много астрономов изготавливают свои собственные системы Добсона). Второй характерный случай — если в хозяйстве уже есть монтировка (например, от старого телескопа, пришедшего в негодность), и переплачивать за вторую просто незачем. В любом случае при выборе подобной модели стоит обращать особое внимание на тип крепления, на который рассчитана труба — от него напрямую зависит совместимость с конкретной монтировкой.

Фокусное расстояние

Фокусное расстояние объектива телескопа.

Фокусное расстояние — это такое расстояние от оптического центра объектива до плоскости, на которую проецируется изображение (экрана, фотоплёнки, матрицы), при котором объектив телескопа будет выдавать максимально чёткое изображение. Чем длиннее фокусное расстояние — тем большее увеличение способен обеспечить телескоп; однако нужно учитывать, что показатели увеличения также связаны с фокусным расстоянием используемого окуляра и диаметром объектива (подробнее об этом см. ниже). А вот на что данный параметр влияет напрямую — так это на габариты прибора, точнее, на длину тубуса. В случае рефракторов и большинства рефлекторов (см. «Конструкция») длина телескопа приблизительно соответствует его фокусному расстоянию, а в вот модели зеркально-линзового типа могут быть в 3 – 4 раза короче фокусного расстояния.

Также отметим, что фокусное расстояние учитывается в некоторых формулах, характеризующих качество работы телескопа. К примеру, считается, что для хорошей видимости через простейшую разновидность рефракторного телескопа — т.н. ахромат — необходимо, чтобы его фокусное расстояние было не меньше, чем D^2/10 (квадрат диаметра объектива, делённый на 10), а лучше — не менее D^2/9.

Светосила

Светосила телескопа характеризует общее количество света, «захватываемое» системой и передаваемое в глаз наблюдателя. С точки зрения цифр светосила — это соотношение между диаметром объектива и фокусным расстоянием (см. выше): например, для системы с апертурой 100 мм и фокусным расстоянием 1000 мм светосила будет составлять 100/1000 = 1/10. Также этот показатель называют «относительным отверстием».

При выборе по светосиле необходимо в первую очередь учитывать, для каких целей планируется применять телескоп. Крупное относительное отверстие весьма удобно для астрофотографии, т.к. обеспечивает пропускание большого количества света и позволяет работать с меньшими выдержками. А вот для визуальных наблюдений высокая светосила не требуется — даже наоборот, более длиннофокусные (и, соответственно, менее светосильные) телескопы характеризуются меньшим уровнем аберраций и позволяют применять для наблюдения более удобные окуляры. Также отметим, что большая светосила требует применения крупных объективов, что соответствующим образом сказывается на габаритах, весе и цене телескопа.

Искатель

Тип искателя, предусмотренного в конструкции телескопа.

Искателем называют приспособление, предназначенное для наведения устройства на определённый небесный объект. Необходимость такого приспособления связана с тем, что телескопы, в связи с высокой кратностью, имеют весьма небольшие углы обзора, что сильно затрудняет визуальное наведение: в окуляре виден настолько маленький участок неба, что определить по этим данным, куда именно направлен телескоп и куда его нужно поворачивать, практически невозможно. Наведение же «по тубусу» весьма неточно, особенно в случае зеркальных моделей, имеющих большую толщину и относительно малую длину. Искатель же имеет невысокую кратность (либо работает вообще без увеличения) и, соответственно, широкие углы обзора, играя, таким образом, роль своеобразного «прицела» для основной оптической системы телескопа.

В современных телескопах могут применяться такие виды искателей:

Оптический. Чаще всего подобные искатели имеют вид небольшого монокуляра, направленного параллельно оптической оси телескопа. В поле зрения монокуляра обычно наносится разметка, показывающая, какая точка видимого пространства соответствует полю зрения самого телескопа. В большинстве случаев оптические искатели тоже обеспечивают определённое увеличение — обычно порядка 5 – 8х, поэтому при работе с такими системами, как правило, всё равно требуется первоначальное наведение телескопа &l...aquo;по тубусу». Достоинствами оптики, по сравнению с LED-искателями, являются простота конструкции, невысокая стоимость, а также хорошая пригодность для наблюдений в городе, пригородах и других условиях с довольно светлым небом. Кроме того, такие приспособления не зависят от источников питания. На фоне тёмного неба разметка может быть видна плохо, однако для таких случаев существует специфическая разновидность искателей — с подсвечиваемым перекрестьем. Правда, подсветка требует батареек, но и при их отсутствии разметка остаётся видимой — как в обычном, не подсвечиваемом искателе. Приспособления данного типа обозначаются традиционным для оптики индексом из двух чисел, первое из которых соответствует кратности, второе — диаметру объектива — например, 5х24.

— С точечной наводкой (LED). Данная разновидность искателей по принципу действия аналогична коллиматорным прицелам: обязательным элементом конструкции является смотровое окошко (в виде характерного стёклышка в рамке), на которое проецируется метка от источника света. Эта метка может иметь вид как точки, так и другой фигуры — перекрестья, кольца с точкой и т.п. Устройство подобного искателя таково, что положение метки в окне зависит от положения глаза наблюдателя, однако эта метка всегда указывает на точку, в которую направлен телескоп. LED-искатели удобнее оптических в том смысле, что пользователю не приходится приближать глаз вплотную к окуляру — метка неплохо видна на расстоянии в 20 – 30 см, что облегчает наведение в некоторых ситуациях (например, если наблюдаемый объект расположен близко к зениту). Кроме того, подобные приспособления отлично подходят для работы с тёмным небом. Они обычно не имеют увеличения, однако это нельзя назвать однозначным недостатком — для искателя обширное поле зрения часто бывает важнее приближения. А вот из однозначных практических недостатков стоит отметить необходимость источника питания (обычно батареек) — без них система превращается в бесполезное стёклышко. Кроме того, коллиматоры в целом заметно дороже классической оптики, а на фоне освещённого неба метка может теряться.

Отметим, что существуют телескопы, вообще не имеющие искателей — это модели с небольшим диаметром объектива, в которых минимальная кратность (см. выше) невелика и обеспечивает достаточно обширное поле зрения.

Посадочный диаметр окуляра

Размер «посадочного места» под окуляр, предусмотренного в конструкции телескопа. В современных моделях используются гнёзда стандартных размеров — чаще всего 0,96", 1,25" либо 2".

Этот параметр пригодится прежде всего в том случае, если Вы хотите докупить окуляры отдельно: их посадочный диаметр должен соответствовать характеристикам телескопа. Впрочем, 2" гнёзда допускают установку окуляров на 1,25" через специальный переходник, но обратный вариант невозможен. Отметим, что телескопы с посадочным диаметром 2" считаются наиболее продвинутыми, т.к. под этот размер выпускается, помимо окуляров, множество дополнительных аксессуаров (корректоры искажений, фотоадаптеры и т.п.), а сами 2" окуляры обеспечивают более обширное поле зрения (правда, и стоят дороже). В свою очередь «глазки» на 1,25" применяется в относительно недорогих моделях, а на 0,96" — в простейших телескопах начального уровня с небольшими объективами (обычно до 50 мм).

Линза Барлоу

Кратность линзы Барлоу, предусмотренной в комплекте поставки телескопа.

Подобное приспособление (как правило, оно делается съёмным) представляет собой рассеивающую линзу или систему линз, устанавливаемую перед окуляром. Фактически линза Барлоу увеличивает фокусное расстояние телескопа, обеспечивая большую степень увеличения (и меньший угол обзора) при том же окуляре. При этом кратность увеличения с линзой можно подсчитать, помножив «родную» кратность с данным окуляром на кратность самой линзы: например, если телескоп с 10 мм окуляром обеспечивал степень увеличения 100х, то при установке 3х линзы Барлоу этот показатель составит 100х3=300х. Разумеется, того же эффекта можно добиться и при установке окуляра с уменьшенным фокусным расстоянием. Однако, во-первых, подобный окуляр не всегда может быть доступен для приобретения; во-вторых, одна линза Барлоу может применяться со всеми окулярами, подходящими для телескопа, расширяя арсенал доступных кратностей увеличения. Особенно такая возможность удобна в тех случаях, когда наблюдателю требуется обширный набор вариантов по степени увеличения. К примеру, набор из 4 окуляров и одной линзы Барлоу обеспечивает 8 вариантов кратности, при этом работать с таким набором удобнее, чем с 8 отдельными окулярами.

Оборачивающая линза

Кратность оборачивающей линзы, предусмотренной в комплекте поставки телескопа.

Без применения подобной линзы телескоп, как правило, выдаёт перевёрнутое изображение рассматриваемого объекта. При астрономических наблюдениях и астрофотографии это в большинстве случаев не критично, однако при рассматривании наземных объектов подобное положение «картинки» вызывает серьёзные неудобства. Оборачивающая линза обеспечивает переворот изображения, позволяя наблюдателю видеть истинное (не перевёрнутое, не отзеркаленное) положение предметов в поле зрения. Встречается данная функция в основном в относительно простых телескопах с невысокой кратностью увеличения и небольшим размером объектива — именно они считаются наиболее подходящими для наземных наблюдений. Отметим, что, помимо «чистых» линз, встречаются также оборачивающие системы на основе призм.

Что касается кратности, то она весьма невелика и составляет, как правило, от 1х до 1,5х — это сводит к минимуму влияние на качество изображения (а повышать общую степень увеличения удобнее другими способами — например, при помощи описанных выше линз Барлоу).

Диагональное зеркало

Наличие диагонального зеркала в конструкции или комплекте поставки телескопа.

Данный аксессуар применяется в сочетании с линзовыми и зеркально-линзовыми телескопами (см. «Конструкция»). В таких моделях окуляр располагается в торце трубы и направлен вдоль оптической оси телескопа; в некоторых ситуациях — например, при наблюдении объектов вблизи зенита — подобное расположение может быть весьма неудобным для наблюдателя. Диагональное зеркало позволяет направить окуляр под углом к оптической оси, что обеспечивает комфорт в упомянутых ситуациях. Правда, изображение обычно получается отзеркаленным (справа налево), однако при наблюдениях астрономических объектов это навряд ли можно назвать серьёзным недостатком. Диагональные зеркала могут быть как съёмными, так и встроенными, также может предусматриваться возможность изменять угол поворота окуляра.

Крепление трубы

Способ крепления трубы к монтировке, предусмотренный в телескопе.

В наше время используется три основных таких способа: кольца, винты, пластина. Вот более подробное описание каждого из них:

— Крепежные кольца. Пара колец с винтовыми зажимами, установленных на монтировке. Внутренний диаметр колец приблизительно соответствует толщине трубы, а затягивание винтов обеспечивает плотную фиксацию. При этом тубус телескопа, как правило, не имеет каких-либо специальных упоров и удерживается в кольцах исключительно за счет силы трения. На практике это позволяет, ослабив винты, сдвинуть трубу вперед или назад, подобрав оптимальное положение под ту или иную ситуацию. Однако здесь стоит быть осторожным: слишком большое смещение крепления от середины, особенно в рефракторах с большой длиной трубы, может нарушить равновесие всей конструкции.
Как бы то ни было, кольца достаточно просты и в то же время удобны и практичны, а совместимость с ними ограничивается исключительно диаметром тубуса. В свете этого именно данный тип крепления наиболее популярен в наше время. Его недостатками можно назвать необходимость самостоятельно подбирать достаточно стабильное положение телескопа, а также следить за надежной затяжкой винтов — их ослабление может привести к проскальзыванию тубуса и даже его выпадению из колец.

— Крепежная пластина. Фактически речь идет о креплени...и типа «ласточкин хвост». На корпусе телескопа для этого предусматривается специальная рейка, а на монтировке — платформа с пазом. При установке трубы на монтировку рейка задвигается в паз с торца и фиксируется специальным приспособлением вроде защелки или винта.
Одним из ключевых преимуществ крепежных пластин являются простота и скорость монтажа и демонтажа телескопа. Так, открутить и закрутить единственный винт фиксатора проще, чем возиться с винтовым креплением или затяжками на кольцах — тем более что во многих моделях этот винт можно крутить руками, без специального инструмента. А уж о защелках и говорить не приходится. Недостатком данного варианта можно назвать требовательность к качеству материалов и точности изготовления — иначе может появиться люфт, способный заметно «испортить жизнь» астроному. Кроме того, подобное крепление имеет очень ограниченные возможности по перемещению телескопа вперед-назад на монтировке, а то и вовсе не имеет их; а планки и пазы могут различаться по форме и размерам, что несколько затрудняет подбор сторонних монтировок.

— Крепежные винты. Монтировки с таким креплением имеют посадочное место в виде буквы Y, между «рогами» которой и устанавливается телескоп. При этом он с обеих сторон прикрепляется к рогам винтами, которые вкручиваются прямо в тубус; винтов предусматривается минимум по два с каждой стороны, чтобы труба не могла самостоятельно повернуться вокруг точки крепления.
В целом этот вариант фиксации отличается высокой надежностью и удобством в процессе использования телескопа. Винты плотно, без люфтов, держат тубус; при их ослаблении может разве что появиться тот самый люфт, но и только; кроме того, телескоп удержится на монтировке и не упадет, если хоть один винт остается хотя бы частично закрученным. Кроме того, место фиксации обычно размещается в районе центра тяжести, что по умолчанию обеспечивает оптимальный баланс и избавляет пользователя от необходимости самостоятельно подыскивать точку крепления. С другой стороны, установка и снятие трубы в таких монтировках требует больше времени и хлопот, чем в описанных выше системах; а расположение отверстий под винты и крепежная резьба в разных моделях, как правило, разные, и конструкции этого типа обычно не являются взаимозаменяемыми.