Фокусное расстояние
Фокусное расстояние объектива телескопа.
Фокусное расстояние — это такое расстояние от оптического центра объектива до плоскости, на которую проецируется изображение (экрана, фотоплёнки, матрицы), при котором объектив телескопа будет выдавать максимально чёткое изображение. Чем длиннее фокусное расстояние — тем большее увеличение способен обеспечить телескоп; однако нужно учитывать, что показатели увеличения также связаны с фокусным расстоянием используемого окуляра и диаметром объектива (подробнее об этом см. ниже). А вот на что данный параметр влияет напрямую — так это на габариты прибора, точнее, на длину тубуса. В случае рефракторов и большинства рефлекторов (см. «Конструкция») длина телескопа приблизительно соответствует его фокусному расстоянию, а в вот модели зеркально-линзового типа могут быть в 3 – 4 раза короче фокусного расстояния.
Также отметим, что фокусное расстояние учитывается в некоторых формулах, характеризующих качество работы телескопа. К примеру, считается, что для хорошей видимости через простейшую разновидность рефракторного телескопа — т.н. ахромат — необходимо, чтобы его фокусное расстояние было не меньше, чем D^2/10 (квадрат диаметра объектива, делённый на 10), а лучше — не менее D^2/9.
Макс. разрешающее увеличение
Наибольшее разрешающее увеличение, которое может обеспечить телескоп. Фактически — это увеличение, при котором телескоп обеспечивает максимальную детализацию изображения и позволяет видеть все мелкие подробности, которые в него в принципе возможно увидеть. При снижении степени увеличения ниже данного значения уменьшается размер видимых деталей, что ухудшает их видимость, при увеличении становятся заметны дифракционные явления, вследствие которых детали начинают расплываться.
Максимальное разрешающее увеличение меньше максимального полезного (см. выше) — оно составляет где-то 1,4…1,5 от диаметра объектива в миллиметрах (разные формулы дают разное значение, однозначно же определить это значение невозможно, поскольку многое зависит от субъективных ощущений наблюдателя и особенностей его зрения). Однако именно с такой кратностью стоит работать, если Вы хотите рассмотреть максимальное количество деталей — например, неровности на поверхности Луны или двойные звёзды. Более крупное увеличение (в пределах максимального полезного) имеет смысл брать только для рассматривания ярких контрастных объектов, а также в том случае, если наблюдатель имеет проблемы со зрением.
Светосила
Светосила телескопа характеризует общее количество света, «захватываемое» системой и передаваемое в глаз наблюдателя. С точки зрения цифр светосила — это соотношение между диаметром объектива и фокусным расстоянием (см. выше): например, для системы с апертурой 100 мм и фокусным расстоянием 1000 мм светосила будет составлять 100/1000 = 1/10. Также этот показатель называют «относительным отверстием».
При выборе по светосиле необходимо в первую очередь учитывать, для каких целей планируется применять телескоп. Крупное относительное отверстие весьма удобно для астрофотографии, т.к. обеспечивает пропускание большого количества света и позволяет работать с меньшими выдержками. А вот для визуальных наблюдений высокая светосила не требуется — даже наоборот, более длиннофокусные (и, соответственно, менее светосильные) телескопы характеризуются меньшим уровнем аберраций и позволяют применять для наблюдения более удобные окуляры. Также отметим, что большая светосила требует применения крупных объективов, что соответствующим образом сказывается на габаритах, весе и цене телескопа.
Разрешающая способность (Dawes)
Разрешающая способность телескопа, определённая согласно критерию Дауэса (Dawes). Также этот показатель называют «предел Дауэса». (Встречается также прочтение «Дейвса», но оно не является верным).
Разрешающая способность в данном случае — это показатель, характеризующий способность телескопа различить отдельные источники света, расположенные на близком расстоянии, иными словами — способность увидеть их именно как отдельные объекты. Измеряется этот показатель в угловых секундах (1'' — это 1/3600 часть градуса). На расстояниях, меньших, чем разрешающая способность, эти источники (например, двойные звёзды) будут сливаться в сплошное пятно. Таким образом, чем ниже цифры в данном пункте — тем выше разрешающая способность, тем лучше телескоп подходит для разглядывания близко расположенных объектов. Однако стоит учитывать, что в данном случае речь идёт не о возможности видеть полностью отдельные друг от друга объекты, а лишь о возможности опознать в вытянутом световом пятне два источника света, слившиеся (для наблюдателя) в один. Для того, чтобы наблюдатель мог видеть два отдельных источника, расстояние между ними должно быть приблизительно вдвое больше заявленной разрешающей способности.
Согласно критерию Дауэса разрешающая способность напрямую зависит от диаметра объектива телескопа (см. выше): чем крупнее апертура, тем меньше может быть угол между отдельно видимыми объектами и тем выше разрешающая способность. По общему принципу этот показатель аналогичен...критерию Рэлея (см. «Разрешающая способность (Rayleigh)»), однако он был выведен экспериментальным путём, а не теоретически. Поэтому, с одной стороны, предел Дауэса точнее описывает практические возможности телескопа, с другой — соответствие этим возможностям во многом зависит субъективных особенностей наблюдателя. Проще говоря, человек без опыта наблюдений за двойными объектами, или имеющий проблемы со зрением, может попросту «не узнать» в вытянутом пятне два источника света, если они будут располагаться на расстоянии, сравнимом с пределом Дауэса. Дополнительно о разнице между критериями см. «Разрешающая способность (Rayleigh)».
Разрешающая способность (Rayleigh)
Разрешающая способность телескопа, определённая согласно критерию Рэлея (Rayleigh).
Разрешающая способность в данном случае — это показатель, характеризующий способность телескопа различить отдельные источники света, расположенные на близком расстоянии, иными словами — способность увидеть их именно как отдельные объекты. Измеряется этот показатель в угловых секундах (1'' — это 1/3600 часть градуса). На расстояниях, меньших, чем разрешающая способность, эти источники (например, двойные звёзды) будут сливаться в сплошное пятно. Таким образом, чем ниже цифры в данном пункте — тем выше разрешающая способность, тем лучше телескоп подходит для разглядывания близко расположенных объектов. Однако стоит учитывать, что в данном случае речь идёт не о возможности видеть полностью отдельные друг от друга объекты, а лишь о возможности опознать в вытянутом световом пятне два источника света, слившиеся (для наблюдателя) в один. Для того, чтобы наблюдатель мог видеть два отдельных источника, расстояние между ними должно быть приблизительно вдвое больше заявленной разрешающей способности.
Критерий Рэлея является теоретической величиной и рассчитывается по довольно сложным формулам, учитывающим, помимо диаметра объектива телескопа (см. выше), также длину волны наблюдаемого света, расстояния между объектами и до наблюдателя и т.п. Отдельно видимыми, согласно данному методу, считаются объекты, расположенные на большем расстоянии друг от друга, чем для описанного выше пред...ела Дауэса; поэтому для одного и того же телескопа разрешающая способность по Рэлею будет ниже, чем по Дауэсу (а цифры, указанные в данном пункте — соответственно, больше). С другой стороны, данный показатель меньше зависит от личных особенностей пользователя: различить объекты на расстоянии, соответствующем критерию Рэлея, могут даже неопытные наблюдатели.
Искатель
Тип искателя, предусмотренного в конструкции телескопа.
Искателем называют приспособление, предназначенное для наведения устройства на определённый небесный объект. Необходимость такого приспособления связана с тем, что телескопы, в связи с высокой кратностью, имеют весьма небольшие углы обзора, что сильно затрудняет визуальное наведение: в окуляре виден настолько маленький участок неба, что определить по этим данным, куда именно направлен телескоп и куда его нужно поворачивать, практически невозможно. Наведение же «по тубусу» весьма неточно, особенно в случае зеркальных моделей, имеющих большую толщину и относительно малую длину. Искатель же имеет невысокую кратность (либо работает вообще без увеличения) и, соответственно, широкие углы обзора, играя, таким образом, роль своеобразного «прицела» для основной оптической системы телескопа.
В современных телескопах могут применяться такие виды искателей:
—
Оптический. Чаще всего подобные искатели имеют вид небольшого монокуляра, направленного параллельно оптической оси телескопа. В поле зрения монокуляра обычно наносится разметка, показывающая, какая точка видимого пространства соответствует полю зрения самого телескопа. В большинстве случаев оптические искатели тоже обеспечивают определённое увеличение — обычно порядка 5 – 8х, поэтому при работе с такими системами, как правило, всё равно требуется первоначальное наведение телескопа &l
...aquo;по тубусу». Достоинствами оптики, по сравнению с LED-искателями, являются простота конструкции, невысокая стоимость, а также хорошая пригодность для наблюдений в городе, пригородах и других условиях с довольно светлым небом. Кроме того, такие приспособления не зависят от источников питания. На фоне тёмного неба разметка может быть видна плохо, однако для таких случаев существует специфическая разновидность искателей — с подсвечиваемым перекрестьем. Правда, подсветка требует батареек, но и при их отсутствии разметка остаётся видимой — как в обычном, не подсвечиваемом искателе. Приспособления данного типа обозначаются традиционным для оптики индексом из двух чисел, первое из которых соответствует кратности, второе — диаметру объектива — например, 5х24.
— С точечной наводкой (LED). Данная разновидность искателей по принципу действия аналогична коллиматорным прицелам: обязательным элементом конструкции является смотровое окошко (в виде характерного стёклышка в рамке), на которое проецируется метка от источника света. Эта метка может иметь вид как точки, так и другой фигуры — перекрестья, кольца с точкой и т.п. Устройство подобного искателя таково, что положение метки в окне зависит от положения глаза наблюдателя, однако эта метка всегда указывает на точку, в которую направлен телескоп. LED-искатели удобнее оптических в том смысле, что пользователю не приходится приближать глаз вплотную к окуляру — метка неплохо видна на расстоянии в 20 – 30 см, что облегчает наведение в некоторых ситуациях (например, если наблюдаемый объект расположен близко к зениту). Кроме того, подобные приспособления отлично подходят для работы с тёмным небом. Они обычно не имеют увеличения, однако это нельзя назвать однозначным недостатком — для искателя обширное поле зрения часто бывает важнее приближения. А вот из однозначных практических недостатков стоит отметить необходимость источника питания (обычно батареек) — без них система превращается в бесполезное стёклышко. Кроме того, коллиматоры в целом заметно дороже классической оптики, а на фоне освещённого неба метка может теряться.
Отметим, что существуют телескопы, вообще не имеющие искателей — это модели с небольшим диаметром объектива, в которых минимальная кратность (см. выше) невелика и обеспечивает достаточно обширное поле зрения.Окуляры
В данном пункте указываются окуляры, входящие в штатный комплект поставки телескопа, точнее — фокусные расстояния этих окуляров.
Имея эти данные и зная фокусное расстояние телескопа (см. выше), можно определить степени увеличения, которые устройство может выдавать в комплектации «из коробки». Для телескопа без линз Барлоу (см. ниже) и других дополнительных элементов подобного назначения кратность будет равна фокусному расстоянию объектива, поделенному на фокусное расстояние окуляра. Например, оптика на 1000 мм, укомплектованная «глазками» на 5 и 10 мм, будет способна выдать увеличения 1000/5=200х и 1000/10=100х.
При отсутствии подходящего окуляра в комплекте его, как правило, можно докупить отдельно.
Линза Барлоу
Кратность линзы Барлоу, предусмотренной в комплекте поставки телескопа.
Подобное приспособление (как правило, оно делается съёмным) представляет собой рассеивающую линзу или систему линз, устанавливаемую перед окуляром. Фактически
линза Барлоу увеличивает фокусное расстояние телескопа, обеспечивая большую степень увеличения (и меньший угол обзора) при том же окуляре. При этом кратность увеличения с линзой можно подсчитать, помножив «родную» кратность с данным окуляром на кратность самой линзы: например, если телескоп с 10 мм окуляром обеспечивал степень увеличения 100х, то при установке 3х линзы Барлоу этот показатель составит 100х3=300х. Разумеется, того же эффекта можно добиться и при установке окуляра с уменьшенным фокусным расстоянием. Однако, во-первых, подобный окуляр не всегда может быть доступен для приобретения; во-вторых, одна линза Барлоу может применяться со всеми окулярами, подходящими для телескопа, расширяя арсенал доступных кратностей увеличения. Особенно такая возможность удобна в тех случаях, когда наблюдателю требуется обширный набор вариантов по степени увеличения. К примеру, набор из 4 окуляров и одной линзы Барлоу обеспечивает 8 вариантов кратности, при этом работать с таким набором удобнее, чем с 8 отдельными окулярами.
Диагональное зеркало
Наличие диагонального зеркала в конструкции или комплекте поставки телескопа.
Данный аксессуар применяется в сочетании с линзовыми и зеркально-линзовыми телескопами (см. «Конструкция»). В таких моделях окуляр располагается в торце трубы и направлен вдоль оптической оси телескопа; в некоторых ситуациях — например, при наблюдении объектов вблизи зенита — подобное расположение может быть весьма неудобным для наблюдателя.
Диагональное зеркало позволяет направить окуляр под углом к оптической оси, что обеспечивает комфорт в упомянутых ситуациях. Правда, изображение обычно получается отзеркаленным (справа налево), однако при наблюдениях астрономических объектов это навряд ли можно назвать серьёзным недостатком. Диагональные зеркала могут быть как съёмными, так и встроенными, также может предусматриваться возможность изменять угол поворота окуляра.