Стандарты Wi-Fi
Стандарты Wi-Fi, поддерживаемые оборудованием. В наше время, помимо современных стандартов
Wi-Fi 4 (802.11n),
Wi-Fi 5 (802.11ac),
Wi-Fi 6 (802.11ax) (его разновидность
Wi-Fi 6E),
Wi-Fi 7 (802.11be) и
WiGig (802.11ad), можно встретить также поддержку более ранних версий —
Wi-Fi 3 (802.11g) и даже Wi-Fi 1 (802.11b). Вот более подробное описание каждой из этих версий:
— Wi-Fi 3 (802.11g). Устаревший стандарт, как и канувший в лету Wi-Fi 1 (802.11b). Широко применялся до появления Wi-Fi 4, в наше время используется в основном как дополнение к более новым версиям — в частности, для того, чтоб обеспечить совместимость с устаревшим и бюджетным оборудованием. Работает на частоте 2,4 ГГц, максимальная скорость обмена данными — 54 Мбит/с.
— Wi-Fi 4 (802.11n). Первый из общераспространенных стандартов, поддерживающий частоту 5 ГГц; может работать в этом диапазоне либо в классическом 2,4 ГГц. Стоит подчеркнуть, что некоторые модели Wi-Fi оборудования под этот стандарт используют только 5 ГГц, из-за чего несовместимы с более ранними версиями Wi-Fi. Максимальная скорость у Wi-Fi 4 — 600 Мбит/с; в современных беспроводных устройствах этот стандарт весьма популярен, лишь недавно его стал теснить на этой позиции Wi-Fi 5.
— Wi-Fi
...5 (802.11ac). Наследник Wi-Fi 4, окончательно переместившийся в диапазон 5 ГГц, что положительно сказалось на надежности подключения и скорости передачи данных: она составляет до 1,69 Гбит/с на одну антенну и до 6,77 Гбит/с в целом. Кроме того, это первая версия, в которой была полноценно внедрена технология Beamforming (подробнее см. «Функции и возможности»).
— Wi-Fi 6, Wi-Fi 6E (802.11ax). Развитие Wi-Fi 5, представившее как увеличение скорости до 10 Гбит/с, так и ряд важных усовершенствований в формате работы. Одним из наиболее важных нововведений является использование обширного диапазона частот — от 1 до 7 ГГц; это, в частности, позволяет автоматически выбирать наименее загруженную полосу частот, что положительно влияет на скорость и надежность подключения. При этом устройства Wi-Fi 6 способны работать и на классических частотах 2,4 ГГц и 5 ГГц, а модификация стандарта Wi-Fi 6E способна работать на частотах от 5.9 до 7 ГГц, принято считать что устройства с поддержкой Wi-Fi 6E работают на частоте 6 ГГц, при этом есть полная совместимость с более ранними стандартами. Кроме того, в этой версии были внедрены некоторые улучшения, касающиеся одновременной работы нескольких устройств на одном канале, в частности речь о технологии OFDMA. Благодаря этому Wi-Fi 6 дает наименьшее из современных стандартов падение скорости при загруженном эфире, а модификация Wi-Fi 6E работающая на частоте 6 ГГц имеет наименьшее количество помех.
— Wi-Fi 7 (802.11be). Данный стандарт Wi-Fi начали внедрять в 2023 году. Благодаря использованию модуляции 4096-QAM из него можно выжать максимальную теоретическую скорость обмена данными до 46 Гбит/с. Wi-Fi 7 поддерживает работу в трех частотных диапазонах: 2.4 ГГц, 5 ГГц и 6 ГГц. Максимальную ширину полосы пропускания в стандарте нарастили со 160 МГц до 320 МГц — чем шире канал, тем больше данных он способен передать в одночасье. Из интересных новшеств в Wi-Fi 7 отмечается разработка MLO (Multi-Link Operation) — с ее помощью подключенные устройства обмениваются данными, используя одновременно несколько каналов и частотных диапазонов, что особенно важно для VR и онлайн-игр. Минимизировать задержки связи при условии множества подключенных клиентских устройств призвана технология Multiple Resource Unit. Также на увеличение пропускной способности при большом количестве одновременных подключений нацелен новый протокол 16х16 MIMO, удваивающий количество пространственных потоков в сравнении с предыдущим стандартом Wi-Fi 6.
— WiGig (802.11ad). Стандарт Wi-Fi, использующий рабочую частоту в 60 ГГц; скорость передачи данных может достигать 10 Гбит/с (в зависимости от конкретной версии WiGig). Канал 60 ГГц значительно менее загружен, чем более популярные 2,4 ГГц и 5 ГГц, что положительно сказывается на надежности передачи данных и снижает задержку; последнее бывает особенно важно в играх и некоторых других специальных задачах. С другой стороны, увеличение частоты значительно снизило дальность подключения (подробнее см. «Частотный диапазон»), так что на практике данный стандарт подходит лишь для связи в пределах одной комнаты.
Стоит учитывать, что на практике скорость передачи данных обычно значительно ниже теоретического максимума — особенно при работе нескольких Wi-Fi устройств на одном канале. Такж отметим, что различные стандарты обратно совместимы между собой (с ограничением скорости по более медленному) при условии совпадения частот: например, 802.11ac может работать с 802.11n, но не с 802.11g.Частотный диапазон
Стандартные диапазоны частот Wi-Fi, поддерживаемые устройством.
Данный параметр напрямую связан со стандартами Wi-Fi (см. выше), которым соответствует оборудование. В то же время есть стандарты, охватывающие сразу несколько диапазонов (такие, как Wi-Fi 4 и Wi-Fi 6), причем далеко не каждое совместимое с ними устройство поддерживает сразу все эти диапазоны; так что в подобных случаях этот момент стоит уточнять отдельно. Кроме того, у стандартно используемых в наше время частот есть и общие особенности, вот они:
— 2.4 ГГц. Диапазон, считающийся классическим: применялся в наиболее ранних стандартах Wi-Fi, поддерживается и многими современными версиями. Поэтому до сих пор довольно много Wi-Fi оборудования работает
только на 2,4 ГГц (хотя все чаще встречаются исключения). Главные достоинства такого оборудования — простота, невысокая стоимость, а также совместимость даже с откровенно устаревшими беспроводными устройствами. С другой стороны, диапазон 2,4 ГГц чрезвычайно загружен: помимо большого количества Wi-Fi устройств, его также используют модули Bluetooth и некоторые другие виды электроники. Это может ухудшить качество и скорость связи.
— 5 ГГц. Диапазон, внедренный для преодоления недостатков 2,4 ГГц — в частности, для разгрузки каналов связи и отделения Wi-Fi от других беспроводных технологий. Помимо этого, повышение частоты позволило увеличить скорость связи. 5 ГГц используется как одна из рабочих частот в ста
...ндартах Wi-Fi 4 и Wi-Fi 6 (см. выше) и как единственная в Wi-Fi 5. Так что на рынке можно встретить устройства, работающие только на 5 ГГц, однако большее распространение получило оборудование с несколькими диапазонами, где эта частота является лишь одной из поддерживаемых.
— 6 ГГц. Незагруженная частота, внедряемая в обиход начиная с поколения Wi-Fi 6E. Новый диапазон обеспечивает возможность одновременной работы большого количества клиентских устройств на высокой скорости с минимальным количеством помех и задержек при передаче сигнала. На данный момент это самый свободный, широкий и быстрый диапазон Wi-Fi. Однако в некоторых регионах частота 6 ГГц остаётся недоступной ввиду занятости диапазона средствами военной, фиксированной или радиорелейной беспроводной связи.
— 60 ГГц. Диапазон, внедренный в стандарте WiGig; на сегодня используется только в нем, причем как единственный. Значительное повышение частоты по сравнению с более распространенными вариантами 2,4 ГГц и 5 ГГц положительно сказалось на качестве связи. Так, при том же теоретическом максимуме, что и у Wi-Fi 6 (10 Гбит/с) стандарт WiGig дает более высокую фактическую скорость обмена данными, а также меньше задержек и лагов; это бывает особенно важно в играх и некоторых специфических задачах. Обратной стороной этих преимуществ является небольшая дальность связи: даже при использовании Beamforming (см. «Функции и возможности») она не превышает 10 м на открытом пространстве, а препятствие вроде стены может стать для 60-гигагерцового канала непреодолимым. Поэтому в Wi-Fi оборудовании такая частота встречается в основном среди достаточно специфических устройств — точек доступа (в том числе направленных), которые рассчитаны на соединение отдельных сегментов сети в режиме моста (см. там же). Именно такой режим использования является одним из наиболее оптимальных, учитывая свойства данного диапазона. Впрочем, поддержка 60 ГГц все чаще встречается также в потребительских гаджетах (смартфонах, ноутбуках), поэтому выпускают и роутеры под эту частоту.
— Собственная частота. В редких случаях работа Wi-Fi оборудования возможна на собственных частотах, не подпадающих под стандартные общепринятые значения. Используются такие устройства в основном для построения радиомостов по типу «точка-точка» и «точка-многоточка». К разряду их преимуществ можно отнести низкую частотную зашумленность от стандартных сетей Wi-Fi, и, как следствие, повышенную дальность связи. Стоит отметить, что с ноутбука или смартфона подключиться к таким устройствам напрямую нельзя. Также необходимо учитывать законодательный аспект, поскольку в каждой стране использование частот регламентируется по разному.Диапазоны работы
Количество диапазонов и каналов беспроводной связи, поддерживаемое роутером. Уточняется только для моделей, работающих более чем с одним диапазоном.
—
Двухдиапазонный (2.4 ГГц и 5 ГГц). Устройства, поддерживающие одновременно два популярных диапазона связи — 2,4 ГГц и 5 ГГц — в формате «по одному каналу связи на диапазон». Это обеспечивает совместимость с большинством стандартов Wi-Fi (см. выше), а в некоторых случаях еще и положительно сказывается на качестве связи. К примеру, в адаптере Wi-Fi (см. «Тип устройства») с данной особенностью может предусматриваться возможность оценивать загруженность обоих диапазонов и автоматически выбирать менее загруженный.
—
Трехканальный (2.4 ГГц и 5 ГГц в 2 канала). Усовершенствованная версия двухдиапазонного формата работы: в диапазоне 5 ГГц связь осуществляется по двум каналам. Это позволяет, к примеру, «поднять» на одном роутере сразу три канала беспроводного подключения (три видимых сети в списке беспроводных сетей) и добиться еще более высокой пропускной способности. Преимущества такого формата особенно заметны при работе роутера одновременно с несколькими беспроводными устройствами.
—
Трехдиапазонный (2.4 ГГц, 5 ГГц, 60 ГГц). Наиболее «всеядная» разновидность современного Wi-Fi оборудования, совместимая со всеми популярными стандартами — начиная от устаревшего 802.11 b/g и заканчивая сравнительно новы
...м 802.11 ad. Также обилие диапазонов способствует повышению скорости, особенно при работе с разнодиапазонными устройствами.Макс. скорость при 2.4 ГГц
Максимальная скорость, обеспечиваемая устройством при беспроводной связи в диапазоне 2.4 ГГц.
Этот диапазон используется в большинстве современных стандартов Wi-Fi (см. выше) — как один из доступных или вовсе единственный. Теоретический максимум для него составляет 600 Мбит/с. В реальности Wi-Fi на частоте 2.4 ГГц используется большим количеством клиентских устройств, откуда выплывает перегруженность каналов передачи данных. Также на скоростные показатели работы оборудования влияет количество антенн. Добиться заявленной в спецификации скорости можно разве что в идеальной ситуации. На практике она может быть заметно меньше (нередко — в разы), особенно при обилии беспроводной техники, одновременно подключенной к оборудованию. Максимальная скорость при 2.4 ГГц уточняется в характеристиках конкретных моделей для понимания реальных возможностей Wi-Fi оборудования. Что касается цифр, то по возможностям в диапазоне 2.4 ГГц современное оборудование условно делят на модели со скоростью
до 500 Мбит/с включительно и
свыше 500 Мбит/с.
Макс. скорость при 5 ГГц
Максимальная скорость, обеспечиваемая устройством при беспроводной связи в диапазоне 5 ГГц.
Этот диапазон используется в Wi-Fi 4, Wi-Fi 6 и Wi-Fi 6E как один из доступных, в Wi-Fi 5 — как единственный (см. «Стандарты Wi-Fi»). Максимальная скорость уточняется в характеристиках для того, чтобы обозначить реальные возможности конкретного оборудования — они могут быть заметно скромнее, нежели общие возможности стандарта. Также на деле все зависит от поколения Wi-Fi. К примеру, устройства с поддержкой Wi-Fi 5 могут в теории могут выдавать до 6928 Мбит/с (при использовании восьми антенн), с поддержкой Wi-Fi 6 — до 9607 Мбит/с (при использовании тех же восьми пространственных потоков). Максимально возможная скорость связи достигается при соблюдении определенных условий, и далеко не каждая модель Wi-Fi оборудования полностью удовлетворяет им. Конкретные же цифры условно разбиты на несколько групп: значение
до 500 Мбит/с является довольно скромным, многие устройства поддерживают скорости в диапазоне
500 – 1000 Мбит/с, показатели в
1 – 2 Гбит/с можно отнести к средним, а наиболее продвинутые модели в классе обеспечивают скорость обмена данными
свыше 2 Гбит/с.
Антенн на 2.4 ГГц
Общее количество в роутере антенн, отвечающих за связь в диапазоне 2,4 ГГц. Подробнее о количестве антенн см. «Всего антенн», о диапазоне — «Частотный диапазон».
Антенн на 2.4 / 5 ГГц
Общее количество в роутере антенн, способных работать как на 5 ГГц так и на 2.4 ГГц частоте. Подробнее о количестве антенн см. «Всего антенн», о диапазоне — «Частотный диапазон».
Радиус действия в помещении
Радиус действия Wi-Fi модуля устройства при использовании в помещениях, в том числе через стены.
Этот показатель по определению меньше, чем радиус действия на открытом пространстве (см. ниже), зато он более приближен к реальности: Wi-Fi оборудование чаще всего используется именно в помещениях, где сигналу приходится иметь дело с различными препятствиями. Правда, стоит учитывать, что заявленные в характеристиках цифры довольно условны: на практике дальность связи будет напрямую зависеть от количества и вида препятствий, загруженности эфира сигналами от посторонней электроники, а также возможностей Wi-Fi модулей в устройствах «с другой стороны канала». Тем не менее, разница в заявленном радиусе действия, как правило, соответствует разнице в реальной дальности связи, так что по этой характеристике вполне можно сравнивать разные устройства.
Также данная информация позволяет оценивать радиус действия на открытой местности (если он не заявлен в характеристиках): как правило, этот радиус минимум вдвое больше заявленной дальности в помещении.
Радиус действия вне помещения
Радиус действия Wi-Fi связи при работе устройства вне помещения — на открытой местности, где сигналу не нужно преодолевать препятствия в виде стен и других посторонних предметов. Иными словами, речь идёт о дальности связи в пределах прямой видимости. Этот параметр может пригодиться не только при установке на улице, но и, к примеру, в обширном офисном помещении. Не стоит, однако, забывать, что практический радиус действия может быть несколько меньше, т.к. он зависит ещё и от возможностей подключаемых устройств и уровня помех.
Также отметим, что по этим данным можно оценить радиус действия в помещении, если эта информация почему-то не указана в характеристиках. В среднем этот радиус в 2 – 4 раза меньше дальности вне помещений, а для максимальной гарантии стоит брать коэффициент 4: к примеру, для надежного соединения на расстоянии в 10 м желательно иметь устройство с дальностью на открытой местности не менее чем в 40 м.