Тёмная версия
Казахстан
Каталог   /   Компьютерная техника   /   Сетевое оборудование   /   Wi-Fi оборудование

Сравнение Asus RT-AC51U vs Asus RT-N14U

Добавить в сравнение
Asus RT-AC51U
Asus RT-N14U
Asus RT-AC51UAsus RT-N14U
от 33 750 тг.
Товар устарел
от 26 010 тг.
Товар устарел
Тип устройствароутерроутер
Вход данных (WAN-port)
Ethernet (RJ45)
Wi-Fi
3G модем (USB)
4G (LTE) модем (USB)
Ethernet (RJ45)
 
3G модем (USB)
4G (LTE) модем (USB)
Беспроводное подключение Wi-Fi
Стандарты Wi-Fi
Wi-Fi 3 (802.11g)
Wi-Fi 4 (802.11n)
Wi-Fi 5 (802.11ac)
Wi-Fi 3 (802.11g)
Wi-Fi 4 (802.11n)
 
Частотный диапазон
2.4 ГГц
5 ГГц
2.4 ГГц
 
Диапазоны работыдвухдиапазонный (2.4 ГГц и 5 ГГц)
Макс. скорость при 2.4 ГГц300 Мбит/с
Макс. скорость при 5 ГГц433 Мбит/с
Подключение и LAN
WAN
1 порт
100 Мбит/с
1 порт
100 Мбит/с
LAN
4 порта
100 Мбит/с
4 порта
100 Мбит/с
Кол-во USB 2.01 шт1 шт
Антенна и передатчик
Wi-Fi антенн3 шт2 шт
Тип антеннвнешняя и внутренняявнутренняя
Коэффициент усиления5 dBi
Антенн на 2.4 ГГц2 шт2 шт
Антенн на 5 ГГц1 шт
Мощность передатчика19 dBm
Функции
Функции и возможности
NAT
сетевой экран (Firewall)
CLI (Telnet)
NAT
сетевой экран (Firewall)
 
Дополнительно
DHCP-сервер
FTP-сервер
файл-сервер
медиа сервер (DLNA)
принт-сервер
торрент-клиент
поддержка VPN
поддержка DDNS
поддержка DMZ
DHCP-сервер
 
файл-сервер
 
принт-сервер
торрент-клиент
поддержка VPN
 
 
Безопасность
Стандарты безопасности
WPA
WEP
WPA2
802.1x
WPA
WEP
WPA2
802.1x
Общее
Габариты189x129x36 мм187x145x77 мм
Вес270 г260 г
Цвет корпуса
Дата добавления на E-Katalogмай 2015май 2013
Сравнение цен

Вход данных (WAN-port)

Способы соединения с Интернетом (или другой внешней сетью, например, в режиме моста), поддерживаемые устройством.

Классическим, наиболее распространенным вариантом такого соединения в наше время является LAN (Ethernet), однако этим дело не ограничивается. Проводным способом подключение может также осуществляться через ADSL или оптоволокно SFP, а беспроводным — через мобильные сети (при помощи SIM-карты, SIM-карты 5G либо внешнего модема для 3G или 4G), а также через Wi-Fi. Вот более подробное описание каждого варианта:

— Ethernet (RJ45). Классическое проводное подключение по сетевому кабелю через разъем RJ-45. Также известно как «LAN», хотя такое обозначение не совсем корректно. В наше время является одним из самых распространенных способов проводного подключения к Интернету, также широко применяется в локальных сетях. Связано это с тем, что скорость работы Ethernet фактически ограничивается лишь возможностями сетевых контроллеров; при этом даже самые простые модули поддерживают до 100 Мбит/с, а в продвинутом оборудовании это значение может достигать 10 Гбит/с.

— ADSL. Технология, применяемая в основном для проводного подключения к Интернету по существующим линиям стационарной теле...фонной связи. В этом заключается ее основное преимущество — можно использовать готовые линии, не возясь с прокладкой большого числа дополнительных проводов; при этом ADSL работает независимо от телефонных звонков и не мешает им. В то же время скорость такого подключения заметно ниже, чем по Ethernet — даже в продвинутом оборудовании она не превышает 24 Мбит/с. К тому же трафик при ADSL-связи распределяется асимметрично: полная скорость достигается только при работе на прием, скорость на передачу данных значительно ниже, что создает проблемы для видеосвязи и некоторых других задач. Так что в наше время ADSL постепенно вытесняется более продвинутыми стандартами, хотя до полного исчезновения этой технологии все еще далеко.

— Wi-Fi. Подключение к источнику внешних данных через Wi-Fi. Такой формат работы по определению используют Wi-Fi адаптеры (см. «Тип устройства), а также большинство MESH-оборудования. (Впрочем, если комплект поставки MESH-системы включает и узлы, и главное управляющее устройство для них, то WAN-вход может указываться для управляющего устройства, и часто это не Wi-Fi). Также вход данных этого типа может предусматриваться в других видах оборудования — в частности, роутерах и точках доступа (например, для работы в режиме моста или репитера).

— 3G модем (USB). Соединение с Интернетом через мобильную сеть 3G с использованием отдельного внешнего модема, подключаемого к USB-порту. Чаще всего речь идет о сетях UMTS (развитие мобильной связи GSM), наиболее распространенных в Европе и на постсоветском пространстве; однако может предусматриваться также возможность использовать модемы для сетей CDMA (технология EV-DO). Эти нюансы, а также совместимость с конкретными моделями модемов, нужно уточнять отдельно. Однако в любом случае 3G-связь может стать неплохим вариантом для ситуаций, в которых проводное подключение к Интернету затруднено или невозможно — например, в частном секторе. Кроме того, некоторые Wi-Fi устройства с этой функцией оснащаются автономными источниками питания и могут использоваться даже «на ходу». Скорость передачи данных у 3G-связи приближается к широкополосному проводному подключению (от 2 до 70 Мбит/с при нормальном сигнале, в зависимости от конкретной технологии); правда, она меньше, чем в 4G-сетях (см. ниже), зато покрытие у 3G более обширно, а оборудование под этот стандарт обходится дешевле.

— 4G (LTE) модем (USB). Соединение с Интернетом через мобильную сеть 4G (LTE) с использованием отдельного внешнего модема, подключаемого к USB-порту. По основным особенностям аналогично описанному выше 3G-подключению, с поправкой на то, что в данном случае используются более продвинутые сети — четвертого поколения. Скорость передачи данных в таких сетях достигает порядка 150 Мбит/с; они не столь распространены, как 3G-связь, однако в скором времени можно ожидать изменения ситуации. Кроме того, стоит отметить, что в Европе и на постсоветском пространстве сети LTE обычно развертываются на основе 3G UMTS и GSM сетей; так что при отсутствии полноценного 4G-покрытия модемы для таких сетей могут работать по стандарту 3G и даже GSM.

— SIM-карта. Соединение с Интернетом через мобильную сеть с использованием SIM-карты мобильного оператора, установленной прямо в устройство. Конкретный тип поддерживаемых сетей зависит как от возможностей роутера, так и от условий конкретного мобильного оператора; однако все такое оборудование совместимо как минимум с сетями 3G, а нередко и 4G. Особенности этих сетей подробно описаны выше (там же можно прочитать и о достоинствах мобильного подключения к Интернету). Данный же вариант удобен тем, что он позволяет обойтись без отдельного USB-модема — достаточно приобрести SIM-карту, стоимость которой незначительна. Кроме того, использование «симок» положительно сказывается на компактности и удобстве в переноске. С другой стороны, встроенный модуль мобильной связи заметно влияет на общую стоимость — причем при покупке за него в любом случае придется платить (тогда как модель с поддержкой внешних модемов не обязательно покупать сразу с модемом, такие устройства обычно допускают и проводное подключение). Поэтому на данный вариант стоит обращать внимание в том случае, если вы изначально планируете подключаться к Интернету именно через мобильные сети.

— SIM-карта (5G). Возможность работы Wi-Fi оборудования в высокоскоростных мобильных сетях 5G с пиковой пропускной способностью до 20 Гбит/с на прием и до 10 Гбит/с на передачу данных. Реализуется посредством SIM-карты с соответствующей поддержкой 5G. Данный стандарт позволяет снизить энергопотребление в сравнении с предыдущими версиями, также в нем применяется ряд комплексных решений, направленных на повышение надежности и общего качества связи — в частности, многоэлементные антенные решетки (Massive MIMO) и технологии формирования направленного луча (Beamforming).

— SFP (оптика). Подключение по оптоволоконному кабелю стандарта SFP. Такое соединение может осуществляться на высоких скоростях (измеряемых гигабайтами в секунду), а оптоволокно, в отличие от кабеля Ethernet, практически нечувствительно к внешним помехам. С другой стороны, поддержка этого стандарта обходится недешево, а для бытового применения его возможности излишни. Поэтому SFP встречается преимущественно в Wi-Fi устройствах профессионального уровня.

Стандарты Wi-Fi

Стандарты Wi-Fi, поддерживаемые оборудованием. В наше время, помимо современных стандартов Wi-Fi 4 (802.11n), Wi-Fi 5 (802.11ac), Wi-Fi 6 (802.11ax) (его разновидность Wi-Fi 6E), Wi-Fi 7 (802.11be) и WiGig (802.11ad), можно встретить также поддержку более ранних версий — Wi-Fi 3 (802.11g) и даже Wi-Fi 1 (802.11b). Вот более подробное описание каждой из этих версий:

— Wi-Fi 3 (802.11g). Устаревший стандарт, как и канувший в лету Wi-Fi 1 (802.11b). Широко применялся до появления Wi-Fi 4, в наше время используется в основном как дополнение к более новым версиям — в частности, для того, чтоб обеспечить совместимость с устаревшим и бюджетным оборудованием. Работает на частоте 2,4 ГГц, максимальная скорость обмена данными — 54 Мбит/с.

— Wi-Fi 4 (802.11n). Первый из общераспространенных стандартов, поддерживающий частоту 5 ГГц; может работать в этом диапазоне либо в классическом 2,4 ГГц. Стоит подчеркнуть, что некоторые модели Wi-Fi оборудования под этот стандарт используют только 5 ГГц, из-за чего несовместимы с более ранними версиями Wi-Fi. Максимальная скорость у Wi-Fi 4 — 600 Мбит/с; в современных беспроводных устройствах этот стандарт весьма популярен, лишь недавно его стал теснить на этой позиции Wi-Fi 5.

— Wi-Fi...5 (802.11ac). Наследник Wi-Fi 4, окончательно переместившийся в диапазон 5 ГГц, что положительно сказалось на надежности подключения и скорости передачи данных: она составляет до 1,69 Гбит/с на одну антенну и до 6,77 Гбит/с в целом. Кроме того, это первая версия, в которой была полноценно внедрена технология Beamforming (подробнее см. «Функции и возможности»).

— Wi-Fi 6, Wi-Fi 6E (802.11ax). Развитие Wi-Fi 5, представившее как увеличение скорости до 10 Гбит/с, так и ряд важных усовершенствований в формате работы. Одним из наиболее важных нововведений является использование обширного диапазона частот — от 1 до 7 ГГц; это, в частности, позволяет автоматически выбирать наименее загруженную полосу частот, что положительно влияет на скорость и надежность подключения. При этом устройства Wi-Fi 6 способны работать и на классических частотах 2,4 ГГц и 5 ГГц, а модификация стандарта Wi-Fi 6E способна работать на частотах от 5.9 до 7 ГГц, принято считать что устройства с поддержкой Wi-Fi 6E работают на частоте 6 ГГц, при этом есть полная совместимость с более ранними стандартами. Кроме того, в этой версии были внедрены некоторые улучшения, касающиеся одновременной работы нескольких устройств на одном канале, в частности речь о технологии OFDMA. Благодаря этому Wi-Fi 6 дает наименьшее из современных стандартов падение скорости при загруженном эфире, а модификация Wi-Fi 6E работающая на частоте 6 ГГц имеет наименьшее количество помех.

— Wi-Fi 7 (802.11be). Данный стандарт Wi-Fi начали внедрять в 2023 году. Благодаря использованию модуляции 4096-QAM из него можно выжать максимальную теоретическую скорость обмена данными до 46 Гбит/с. Wi-Fi 7 поддерживает работу в трех частотных диапазонах: 2.4 ГГц, 5 ГГц и 6 ГГц. Максимальную ширину полосы пропускания в стандарте нарастили со 160 МГц до 320 МГц — чем шире канал, тем больше данных он способен передать в одночасье. Из интересных новшеств в Wi-Fi 7 отмечается разработка MLO (Multi-Link Operation) — с ее помощью подключенные устройства обмениваются данными, используя одновременно несколько каналов и частотных диапазонов, что особенно важно для VR и онлайн-игр. Минимизировать задержки связи при условии множества подключенных клиентских устройств призвана технология Multiple Resource Unit. Также на увеличение пропускной способности при большом количестве одновременных подключений нацелен новый протокол 16х16 MIMO, удваивающий количество пространственных потоков в сравнении с предыдущим стандартом Wi-Fi 6.

— WiGig (802.11ad). Стандарт Wi-Fi, использующий рабочую частоту в 60 ГГц; скорость передачи данных может достигать 10 Гбит/с (в зависимости от конкретной версии WiGig). Канал 60 ГГц значительно менее загружен, чем более популярные 2,4 ГГц и 5 ГГц, что положительно сказывается на надежности передачи данных и снижает задержку; последнее бывает особенно важно в играх и некоторых других специальных задачах. С другой стороны, увеличение частоты значительно снизило дальность подключения (подробнее см. «Частотный диапазон»), так что на практике данный стандарт подходит лишь для связи в пределах одной комнаты.

Стоит учитывать, что на практике скорость передачи данных обычно значительно ниже теоретического максимума — особенно при работе нескольких Wi-Fi устройств на одном канале. Такж отметим, что различные стандарты обратно совместимы между собой (с ограничением скорости по более медленному) при условии совпадения частот: например, 802.11ac может работать с 802.11n, но не с 802.11g.

Частотный диапазон

Стандартные диапазоны частот Wi-Fi, поддерживаемые устройством.

Данный параметр напрямую связан со стандартами Wi-Fi (см. выше), которым соответствует оборудование. В то же время есть стандарты, охватывающие сразу несколько диапазонов (такие, как Wi-Fi 4 и Wi-Fi 6), причем далеко не каждое совместимое с ними устройство поддерживает сразу все эти диапазоны; так что в подобных случаях этот момент стоит уточнять отдельно. Кроме того, у стандартно используемых в наше время частот есть и общие особенности, вот они:

— 2.4 ГГц. Диапазон, считающийся классическим: применялся в наиболее ранних стандартах Wi-Fi, поддерживается и многими современными версиями. Поэтому до сих пор довольно много Wi-Fi оборудования работает только на 2,4 ГГц (хотя все чаще встречаются исключения). Главные достоинства такого оборудования — простота, невысокая стоимость, а также совместимость даже с откровенно устаревшими беспроводными устройствами. С другой стороны, диапазон 2,4 ГГц чрезвычайно загружен: помимо большого количества Wi-Fi устройств, его также используют модули Bluetooth и некоторые другие виды электроники. Это может ухудшить качество и скорость связи.

— 5 ГГц. Диапазон, внедренный для преодоления недостатков 2,4 ГГц — в частности, для разгрузки каналов связи и отделения Wi-Fi от других беспроводных технологий. Помимо этого, повышение частоты позволило увеличить скорость связи. 5 ГГц используется как одна из рабочих частот в ста...ндартах Wi-Fi 4 и Wi-Fi 6 (см. выше) и как единственная в Wi-Fi 5. Так что на рынке можно встретить устройства, работающие только на 5 ГГц, однако большее распространение получило оборудование с несколькими диапазонами, где эта частота является лишь одной из поддерживаемых.

— 6 ГГц. Незагруженная частота, внедряемая в обиход начиная с поколения Wi-Fi 6E. Новый диапазон обеспечивает возможность одновременной работы большого количества клиентских устройств на высокой скорости с минимальным количеством помех и задержек при передаче сигнала. На данный момент это самый свободный, широкий и быстрый диапазон Wi-Fi. Однако в некоторых регионах частота 6 ГГц остаётся недоступной ввиду занятости диапазона средствами военной, фиксированной или радиорелейной беспроводной связи.

— 60 ГГц. Диапазон, внедренный в стандарте WiGig; на сегодня используется только в нем, причем как единственный. Значительное повышение частоты по сравнению с более распространенными вариантами 2,4 ГГц и 5 ГГц положительно сказалось на качестве связи. Так, при том же теоретическом максимуме, что и у Wi-Fi 6 (10 Гбит/с) стандарт WiGig дает более высокую фактическую скорость обмена данными, а также меньше задержек и лагов; это бывает особенно важно в играх и некоторых специфических задачах. Обратной стороной этих преимуществ является небольшая дальность связи: даже при использовании Beamforming (см. «Функции и возможности») она не превышает 10 м на открытом пространстве, а препятствие вроде стены может стать для 60-гигагерцового канала непреодолимым. Поэтому в Wi-Fi оборудовании такая частота встречается в основном среди достаточно специфических устройств — точек доступа (в том числе направленных), которые рассчитаны на соединение отдельных сегментов сети в режиме моста (см. там же). Именно такой режим использования является одним из наиболее оптимальных, учитывая свойства данного диапазона. Впрочем, поддержка 60 ГГц все чаще встречается также в потребительских гаджетах (смартфонах, ноутбуках), поэтому выпускают и роутеры под эту частоту.

— Собственная частота. В редких случаях работа Wi-Fi оборудования возможна на собственных частотах, не подпадающих под стандартные общепринятые значения. Используются такие устройства в основном для построения радиомостов по типу «точка-точка» и «точка-многоточка». К разряду их преимуществ можно отнести низкую частотную зашумленность от стандартных сетей Wi-Fi, и, как следствие, повышенную дальность связи. Стоит отметить, что с ноутбука или смартфона подключиться к таким устройствам напрямую нельзя. Также необходимо учитывать законодательный аспект, поскольку в каждой стране использование частот регламентируется по разному.

Диапазоны работы

Количество диапазонов и каналов беспроводной связи, поддерживаемое роутером. Уточняется только для моделей, работающих более чем с одним диапазоном.

Двухдиапазонный (2.4 ГГц и 5 ГГц). Устройства, поддерживающие одновременно два популярных диапазона связи — 2,4 ГГц и 5 ГГц — в формате «по одному каналу связи на диапазон». Это обеспечивает совместимость с большинством стандартов Wi-Fi (см. выше), а в некоторых случаях еще и положительно сказывается на качестве связи. К примеру, в адаптере Wi-Fi (см. «Тип устройства») с данной особенностью может предусматриваться возможность оценивать загруженность обоих диапазонов и автоматически выбирать менее загруженный.

Трехканальный (2.4 ГГц и 5 ГГц в 2 канала). Усовершенствованная версия двухдиапазонного формата работы: в диапазоне 5 ГГц связь осуществляется по двум каналам. Это позволяет, к примеру, «поднять» на одном роутере сразу три канала беспроводного подключения (три видимых сети в списке беспроводных сетей) и добиться еще более высокой пропускной способности. Преимущества такого формата особенно заметны при работе роутера одновременно с несколькими беспроводными устройствами.

Трехдиапазонный (2.4 ГГц, 5 ГГц, 60 ГГц). Наиболее «всеядная» разновидность современного Wi-Fi оборудования, совместимая со всеми популярными стандартами — начиная от устаревшего 802.11 b/g и заканчивая сравнительно новы...м 802.11 ad. Также обилие диапазонов способствует повышению скорости, особенно при работе с разнодиапазонными устройствами.

Макс. скорость при 2.4 ГГц

Максимальная скорость, обеспечиваемая устройством при беспроводной связи в диапазоне 2.4 ГГц.

Этот диапазон используется в большинстве современных стандартов Wi-Fi (см. выше) — как один из доступных или вовсе единственный. Теоретический максимум для него составляет 600 Мбит/с. В реальности Wi-Fi на частоте 2.4 ГГц используется большим количеством клиентских устройств, откуда выплывает перегруженность каналов передачи данных. Также на скоростные показатели работы оборудования влияет количество антенн. Добиться заявленной в спецификации скорости можно разве что в идеальной ситуации. На практике она может быть заметно меньше (нередко — в разы), особенно при обилии беспроводной техники, одновременно подключенной к оборудованию. Максимальная скорость при 2.4 ГГц уточняется в характеристиках конкретных моделей для понимания реальных возможностей Wi-Fi оборудования. Что касается цифр, то по возможностям в диапазоне 2.4 ГГц современное оборудование условно делят на модели со скоростью до 500 Мбит/с включительно и свыше 500 Мбит/с.

Макс. скорость при 5 ГГц

Максимальная скорость, обеспечиваемая устройством при беспроводной связи в диапазоне 5 ГГц.

Этот диапазон используется в Wi-Fi 4, Wi-Fi 6 и Wi-Fi 6E как один из доступных, в Wi-Fi 5 — как единственный (см. «Стандарты Wi-Fi»). Максимальная скорость уточняется в характеристиках для того, чтобы обозначить реальные возможности конкретного оборудования — они могут быть заметно скромнее, нежели общие возможности стандарта. Также на деле все зависит от поколения Wi-Fi. К примеру, устройства с поддержкой Wi-Fi 5 могут в теории могут выдавать до 6928 Мбит/с (при использовании восьми антенн), с поддержкой Wi-Fi 6 — до 9607 Мбит/с (при использовании тех же восьми пространственных потоков). Максимально возможная скорость связи достигается при соблюдении определенных условий, и далеко не каждая модель Wi-Fi оборудования полностью удовлетворяет им. Конкретные же цифры условно разбиты на несколько групп: значение до 500 Мбит/с является довольно скромным, многие устройства поддерживают скорости в диапазоне 500 – 1000 Мбит/с, показатели в 1 – 2 Гбит/с можно отнести к средним, а наиболее продвинутые модели в классе обеспечивают скорость обмена данными свыше 2 Гбит/с.

Wi-Fi антенн

В современном Wi-Fi оборудовании данный показатель может быть разным: помимо простейших устройств с 1 антенной, встречаются модели, где это число составляет 2, 3, 4 и даже более. Смысл использования нескольких антенн заключается в двух моментах. Во-первых, если на одну антенну приходится несколько внешних устройств — им приходится делить между собой полосу пропускания, и фактическая скорость связи для каждого абонента падает соответственно. Во-вторых, такая конструкция может потребоваться и при связи с одним внешним устройством — для работы с технологией MU-MIMO (см. ниже), позволяющей полностью реализовать возможности современных стандартов Wi-Fi.

В любом случае большее количество антенн, как правило, означает более продвинутое и функциональное устройство. С другой стороны, данный параметр заметно влияет на стоимость; так что специально искать оборудование с большим числом антенн имеет смысл в основном тогда, когда скорость и стабильность связи являются критически важными.

Тип антенн

Внешняя. Антенны, размещённые вне корпуса, как правило, крупнее, чем внутренние, к тому же они обычно оснащаются поворотными креплениями, позволяющими установить стержень в оптимальное положение независимо от положения самого устройства. Всё это положительно сказывается на мощности сигнала. Кроме того, существуют съёмные внешние антенны — при желании их можно заменить на более мощные. Главным недостатком данного варианта можно назвать громоздкость.

— Внутренняя. Антенны, расположенные внутри корпуса, считаются менее продвинутыми, чем внешние. В большинстве случаев они имеют меньший размер, а эффективность работы зависит от положения устройства (хотя многие производители применяют технологии, компенсирующие этот эффект). В то же время оборудование с внутренними антеннами имеет аккуратный внешний вид без лишних выступающих частей.

— Внешняя/внутренняя. Наличие в устройстве сразу обеих описанных выше разновидностей антенн (при этом и тех, и других может быть более одной). Наличие нескольких антенн улучшает качество связи, однако если их все сделать внешними, устройство может получиться слишком громоздким. Поэтому в некоторых моделях роутеров используется компромиссный вариант: часть антенн прячется в корпус, что положительно сказывается на компактности и внешнем виде.

Коэффициент усиления

Коэффициент усиления, обеспечиваемый каждой антенной устройства; если в конструкции предусмотрены антенны с разными характеристиками (характерный пример — одновременно внешние и внутренние антенны), то информация, как правило, указывается по самому высокому значению.

Усиление сигнала в данном случае обеспечивается за счет сужения диаграммы направленности — подобно тому, как в фонариках с регулируемой шириной луча уменьшение этой ширины увеличивает дальность освещения. Простейшие всенаправленные антенны сужают сигнал в основном в вертикальной плоскости, «сплющивая» область охвата — так, что она становится похожа на горизонтальный диск. В свою очередь, направленные антенны (преимущественно в специализированных точках доступа, см. «Тип устройства») создают узкий луч, охватывающий совсем небольшое пространство, зато дающий весьма солидное усиление.

Конкретно же коэффициент усиления описывает, насколько мощным получается сигнал на основном направлении антенны по сравнению с идеальной антенной, равномерно распространяющей сигнал во все стороны. Вместе с мощностью передатчика (см. ниже) это определяет суммарную мощность оборудования и, соответственно, эффективность и дальность связи. Собственно, для определения суммарной мощности достаточно прибавить коэффициент усиления в dBi к мощности передатчика в dBm; dBi и dBm в данном случае можно рассматривать как одни и те же единицы (децибелы).

В целом подобные данные редко требуются рядовому пользователю,...однако они могут пригодиться в некоторых специфических ситуациях, с которыми приходится иметь дело специалистам. Детальные методики расчетов для таких ситуаций можно найти в специальных источниках; здесь же подчеркнем, что не всегда имеет смысл гнаться за высоким коэффициентом усиления антенны. Во-первых, как говорилось выше, это достигается ценой сужения области охвата, что может создавать неудобства; во-вторых, слишком сильный сигнал тоже нередко бывает нежелательным, подробнее см. «Мощность передатчика».
Asus RT-AC51U часто сравнивают