Тёмная версия
Казахстан
Каталог   /   Компьютерная техника   /   Сетевое оборудование   /   Wi-Fi оборудование

Сравнение Asus RT-AC58U vs Asus RT-N66U

Добавить в сравнение
Asus RT-AC58U
Asus RT-N66U
Asus RT-AC58UAsus RT-N66U
Сравнить цены 1
от 42 825 тг.
Товар устарел
ТОП продавцы
нет в продаже
Главное
USB-порт позволяет получать связь с 3G и 4G сетями, а также подключать принтеры, USB-накопители и внешние жесткие диски, чтобы отправлять по сети файлы, воспроизводить музыку и видео. Роутер c поддержкой облачного сервиса ASUS AiCloud.
Тип устройствароутерроутер
Вход данных (WAN-port)
Ethernet (RJ45)
3G модем (USB)
4G (LTE) модем (USB)
Ethernet (RJ45)
 
 
Беспроводное подключение Wi-Fi
Стандарты Wi-Fi
Wi-Fi 3 (802.11g)
Wi-Fi 4 (802.11n)
Wi-Fi 5 (802.11ac)
Wi-Fi 3 (802.11g)
Wi-Fi 4 (802.11n)
 
Частотный диапазон
2.4 ГГц
5 ГГц
2.4 ГГц
5 ГГц
Диапазоны работыдвухдиапазонный (2.4 ГГц и 5 ГГц)двухдиапазонный (2.4 ГГц и 5 ГГц)
Макс. скорость при 2.4 ГГц400 Мбит/с450 Мбит/с
Макс. скорость при 5 ГГц867 Мбит/с1300 Мбит/с
Подключение и LAN
WAN
1 порт
1 Гбит/с
1 порт
1 Гбит/с
LAN
4 порта
1 Гбит/с
4 порта
1 Гбит/с
Кол-во USB 2.02 шт
Кол-во USB 3.2 gen11 шт
Антенна и передатчик
Wi-Fi антенн4 шт3 шт
Тип антеннвнешняявнешняя
MU-MIMO
Съемная антенна
Коэффициент усиления2 dBi
Антенн на 2.4 ГГц2 шт
Антенн на 5 ГГц2 шт
Антенн на 2.4 / 5 ГГц3 шт
Функции
Функции и возможности
балансировка нагрузки (Dual WAN)
резервирование канала
NAT
сетевой экран (Firewall)
CLI (Telnet)
 
 
NAT
сетевой экран (Firewall)
 
Дополнительно
DHCP-сервер
FTP-сервер
файл-сервер
принт-сервер
 
поддержка VPN
поддержка DDNS
поддержка DMZ
DHCP-сервер
FTP-сервер
файл-сервер
принт-сервер
торрент-клиент
поддержка VPN
поддержка DDNS
поддержка DMZ
Безопасность
Стандарты безопасности
WPA
WEP
WPA2
 
WPA
WEP
WPA2
802.1x
Общее
Габариты207x149x36 мм207x148.8x35.5 мм
Вес395 г450 г
Цвет корпуса
Дата добавления на E-Katalogфевраль 2017март 2012
Сравнение цен

Вход данных (WAN-port)

Способы соединения с Интернетом (или другой внешней сетью, например, в режиме моста), поддерживаемые устройством.

Классическим, наиболее распространенным вариантом такого соединения в наше время является LAN (Ethernet), однако этим дело не ограничивается. Проводным способом подключение может также осуществляться через ADSL или оптоволокно SFP, а беспроводным — через мобильные сети (при помощи SIM-карты, SIM-карты 5G либо внешнего модема для 3G или 4G), а также через Wi-Fi. Вот более подробное описание каждого варианта:

— Ethernet (RJ45). Классическое проводное подключение по сетевому кабелю через разъем RJ-45. Также известно как «LAN», хотя такое обозначение не совсем корректно. В наше время является одним из самых распространенных способов проводного подключения к Интернету, также широко применяется в локальных сетях. Связано это с тем, что скорость работы Ethernet фактически ограничивается лишь возможностями сетевых контроллеров; при этом даже самые простые модули поддерживают до 100 Мбит/с, а в продвинутом оборудовании это значение может достигать 10 Гбит/с.

— ADSL. Технология, применяемая в основном для проводного подключения к Интернету по существующим линиям стационарной теле...фонной связи. В этом заключается ее основное преимущество — можно использовать готовые линии, не возясь с прокладкой большого числа дополнительных проводов; при этом ADSL работает независимо от телефонных звонков и не мешает им. В то же время скорость такого подключения заметно ниже, чем по Ethernet — даже в продвинутом оборудовании она не превышает 24 Мбит/с. К тому же трафик при ADSL-связи распределяется асимметрично: полная скорость достигается только при работе на прием, скорость на передачу данных значительно ниже, что создает проблемы для видеосвязи и некоторых других задач. Так что в наше время ADSL постепенно вытесняется более продвинутыми стандартами, хотя до полного исчезновения этой технологии все еще далеко.

— Wi-Fi. Подключение к источнику внешних данных через Wi-Fi. Такой формат работы по определению используют Wi-Fi адаптеры (см. «Тип устройства), а также большинство MESH-оборудования. (Впрочем, если комплект поставки MESH-системы включает и узлы, и главное управляющее устройство для них, то WAN-вход может указываться для управляющего устройства, и часто это не Wi-Fi). Также вход данных этого типа может предусматриваться в других видах оборудования — в частности, роутерах и точках доступа (например, для работы в режиме моста или репитера).

— 3G модем (USB). Соединение с Интернетом через мобильную сеть 3G с использованием отдельного внешнего модема, подключаемого к USB-порту. Чаще всего речь идет о сетях UMTS (развитие мобильной связи GSM), наиболее распространенных в Европе и на постсоветском пространстве; однако может предусматриваться также возможность использовать модемы для сетей CDMA (технология EV-DO). Эти нюансы, а также совместимость с конкретными моделями модемов, нужно уточнять отдельно. Однако в любом случае 3G-связь может стать неплохим вариантом для ситуаций, в которых проводное подключение к Интернету затруднено или невозможно — например, в частном секторе. Кроме того, некоторые Wi-Fi устройства с этой функцией оснащаются автономными источниками питания и могут использоваться даже «на ходу». Скорость передачи данных у 3G-связи приближается к широкополосному проводному подключению (от 2 до 70 Мбит/с при нормальном сигнале, в зависимости от конкретной технологии); правда, она меньше, чем в 4G-сетях (см. ниже), зато покрытие у 3G более обширно, а оборудование под этот стандарт обходится дешевле.

— 4G (LTE) модем (USB). Соединение с Интернетом через мобильную сеть 4G (LTE) с использованием отдельного внешнего модема, подключаемого к USB-порту. По основным особенностям аналогично описанному выше 3G-подключению, с поправкой на то, что в данном случае используются более продвинутые сети — четвертого поколения. Скорость передачи данных в таких сетях достигает порядка 150 Мбит/с; они не столь распространены, как 3G-связь, однако в скором времени можно ожидать изменения ситуации. Кроме того, стоит отметить, что в Европе и на постсоветском пространстве сети LTE обычно развертываются на основе 3G UMTS и GSM сетей; так что при отсутствии полноценного 4G-покрытия модемы для таких сетей могут работать по стандарту 3G и даже GSM.

— SIM-карта. Соединение с Интернетом через мобильную сеть с использованием SIM-карты мобильного оператора, установленной прямо в устройство. Конкретный тип поддерживаемых сетей зависит как от возможностей роутера, так и от условий конкретного мобильного оператора; однако все такое оборудование совместимо как минимум с сетями 3G, а нередко и 4G. Особенности этих сетей подробно описаны выше (там же можно прочитать и о достоинствах мобильного подключения к Интернету). Данный же вариант удобен тем, что он позволяет обойтись без отдельного USB-модема — достаточно приобрести SIM-карту, стоимость которой незначительна. Кроме того, использование «симок» положительно сказывается на компактности и удобстве в переноске. С другой стороны, встроенный модуль мобильной связи заметно влияет на общую стоимость — причем при покупке за него в любом случае придется платить (тогда как модель с поддержкой внешних модемов не обязательно покупать сразу с модемом, такие устройства обычно допускают и проводное подключение). Поэтому на данный вариант стоит обращать внимание в том случае, если вы изначально планируете подключаться к Интернету именно через мобильные сети.

— SIM-карта (5G). Возможность работы Wi-Fi оборудования в высокоскоростных мобильных сетях 5G с пиковой пропускной способностью до 20 Гбит/с на прием и до 10 Гбит/с на передачу данных. Реализуется посредством SIM-карты с соответствующей поддержкой 5G. Данный стандарт позволяет снизить энергопотребление в сравнении с предыдущими версиями, также в нем применяется ряд комплексных решений, направленных на повышение надежности и общего качества связи — в частности, многоэлементные антенные решетки (Massive MIMO) и технологии формирования направленного луча (Beamforming).

— SFP (оптика). Подключение по оптоволоконному кабелю стандарта SFP. Такое соединение может осуществляться на высоких скоростях (измеряемых гигабайтами в секунду), а оптоволокно, в отличие от кабеля Ethernet, практически нечувствительно к внешним помехам. С другой стороны, поддержка этого стандарта обходится недешево, а для бытового применения его возможности излишни. Поэтому SFP встречается преимущественно в Wi-Fi устройствах профессионального уровня.

Стандарты Wi-Fi

Стандарты Wi-Fi, поддерживаемые оборудованием. В наше время, помимо современных стандартов Wi-Fi 4 (802.11n), Wi-Fi 5 (802.11ac), Wi-Fi 6 (802.11ax) (его разновидность Wi-Fi 6E), Wi-Fi 7 (802.11be) и WiGig (802.11ad), можно встретить также поддержку более ранних версий — Wi-Fi 3 (802.11g) и даже Wi-Fi 1 (802.11b). Вот более подробное описание каждой из этих версий:

— Wi-Fi 3 (802.11g). Устаревший стандарт, как и канувший в лету Wi-Fi 1 (802.11b). Широко применялся до появления Wi-Fi 4, в наше время используется в основном как дополнение к более новым версиям — в частности, для того, чтоб обеспечить совместимость с устаревшим и бюджетным оборудованием. Работает на частоте 2,4 ГГц, максимальная скорость обмена данными — 54 Мбит/с.

— Wi-Fi 4 (802.11n). Первый из общераспространенных стандартов, поддерживающий частоту 5 ГГц; может работать в этом диапазоне либо в классическом 2,4 ГГц. Стоит подчеркнуть, что некоторые модели Wi-Fi оборудования под этот стандарт используют только 5 ГГц, из-за чего несовместимы с более ранними версиями Wi-Fi. Максимальная скорость у Wi-Fi 4 — 600 Мбит/с; в современных беспроводных устройствах этот стандарт весьма популярен, лишь недавно его стал теснить на этой позиции Wi-Fi 5.

— Wi-Fi...5 (802.11ac). Наследник Wi-Fi 4, окончательно переместившийся в диапазон 5 ГГц, что положительно сказалось на надежности подключения и скорости передачи данных: она составляет до 1,69 Гбит/с на одну антенну и до 6,77 Гбит/с в целом. Кроме того, это первая версия, в которой была полноценно внедрена технология Beamforming (подробнее см. «Функции и возможности»).

— Wi-Fi 6, Wi-Fi 6E (802.11ax). Развитие Wi-Fi 5, представившее как увеличение скорости до 10 Гбит/с, так и ряд важных усовершенствований в формате работы. Одним из наиболее важных нововведений является использование обширного диапазона частот — от 1 до 7 ГГц; это, в частности, позволяет автоматически выбирать наименее загруженную полосу частот, что положительно влияет на скорость и надежность подключения. При этом устройства Wi-Fi 6 способны работать и на классических частотах 2,4 ГГц и 5 ГГц, а модификация стандарта Wi-Fi 6E способна работать на частотах от 5.9 до 7 ГГц, принято считать что устройства с поддержкой Wi-Fi 6E работают на частоте 6 ГГц, при этом есть полная совместимость с более ранними стандартами. Кроме того, в этой версии были внедрены некоторые улучшения, касающиеся одновременной работы нескольких устройств на одном канале, в частности речь о технологии OFDMA. Благодаря этому Wi-Fi 6 дает наименьшее из современных стандартов падение скорости при загруженном эфире, а модификация Wi-Fi 6E работающая на частоте 6 ГГц имеет наименьшее количество помех.

— Wi-Fi 7 (802.11be). Данный стандарт Wi-Fi начали внедрять в 2023 году. Благодаря использованию модуляции 4096-QAM из него можно выжать максимальную теоретическую скорость обмена данными до 46 Гбит/с. Wi-Fi 7 поддерживает работу в трех частотных диапазонах: 2.4 ГГц, 5 ГГц и 6 ГГц. Максимальную ширину полосы пропускания в стандарте нарастили со 160 МГц до 320 МГц — чем шире канал, тем больше данных он способен передать в одночасье. Из интересных новшеств в Wi-Fi 7 отмечается разработка MLO (Multi-Link Operation) — с ее помощью подключенные устройства обмениваются данными, используя одновременно несколько каналов и частотных диапазонов, что особенно важно для VR и онлайн-игр. Минимизировать задержки связи при условии множества подключенных клиентских устройств призвана технология Multiple Resource Unit. Также на увеличение пропускной способности при большом количестве одновременных подключений нацелен новый протокол 16х16 MIMO, удваивающий количество пространственных потоков в сравнении с предыдущим стандартом Wi-Fi 6.

— WiGig (802.11ad). Стандарт Wi-Fi, использующий рабочую частоту в 60 ГГц; скорость передачи данных может достигать 10 Гбит/с (в зависимости от конкретной версии WiGig). Канал 60 ГГц значительно менее загружен, чем более популярные 2,4 ГГц и 5 ГГц, что положительно сказывается на надежности передачи данных и снижает задержку; последнее бывает особенно важно в играх и некоторых других специальных задачах. С другой стороны, увеличение частоты значительно снизило дальность подключения (подробнее см. «Частотный диапазон»), так что на практике данный стандарт подходит лишь для связи в пределах одной комнаты.

Стоит учитывать, что на практике скорость передачи данных обычно значительно ниже теоретического максимума — особенно при работе нескольких Wi-Fi устройств на одном канале. Такж отметим, что различные стандарты обратно совместимы между собой (с ограничением скорости по более медленному) при условии совпадения частот: например, 802.11ac может работать с 802.11n, но не с 802.11g.

Макс. скорость при 2.4 ГГц

Максимальная скорость, обеспечиваемая устройством при беспроводной связи в диапазоне 2.4 ГГц.

Этот диапазон используется в большинстве современных стандартов Wi-Fi (см. выше) — как один из доступных или вовсе единственный. Теоретический максимум для него составляет 600 Мбит/с. В реальности Wi-Fi на частоте 2.4 ГГц используется большим количеством клиентских устройств, откуда выплывает перегруженность каналов передачи данных. Также на скоростные показатели работы оборудования влияет количество антенн. Добиться заявленной в спецификации скорости можно разве что в идеальной ситуации. На практике она может быть заметно меньше (нередко — в разы), особенно при обилии беспроводной техники, одновременно подключенной к оборудованию. Максимальная скорость при 2.4 ГГц уточняется в характеристиках конкретных моделей для понимания реальных возможностей Wi-Fi оборудования. Что касается цифр, то по возможностям в диапазоне 2.4 ГГц современное оборудование условно делят на модели со скоростью до 500 Мбит/с включительно и свыше 500 Мбит/с.

Макс. скорость при 5 ГГц

Максимальная скорость, обеспечиваемая устройством при беспроводной связи в диапазоне 5 ГГц.

Этот диапазон используется в Wi-Fi 4, Wi-Fi 6 и Wi-Fi 6E как один из доступных, в Wi-Fi 5 — как единственный (см. «Стандарты Wi-Fi»). Максимальная скорость уточняется в характеристиках для того, чтобы обозначить реальные возможности конкретного оборудования — они могут быть заметно скромнее, нежели общие возможности стандарта. Также на деле все зависит от поколения Wi-Fi. К примеру, устройства с поддержкой Wi-Fi 5 могут в теории могут выдавать до 6928 Мбит/с (при использовании восьми антенн), с поддержкой Wi-Fi 6 — до 9607 Мбит/с (при использовании тех же восьми пространственных потоков). Максимально возможная скорость связи достигается при соблюдении определенных условий, и далеко не каждая модель Wi-Fi оборудования полностью удовлетворяет им. Конкретные же цифры условно разбиты на несколько групп: значение до 500 Мбит/с является довольно скромным, многие устройства поддерживают скорости в диапазоне 500 – 1000 Мбит/с, показатели в 1 – 2 Гбит/с можно отнести к средним, а наиболее продвинутые модели в классе обеспечивают скорость обмена данными свыше 2 Гбит/с.

Кол-во USB 2.0

Количество портов USB 2.0, предусмотренных в конструкции устройства.

USB в данном случае играет роль универсального интерфейса для подключения к роутеру периферийных устройств. Конкретные поддерживаемые USB-девайсы и способы их применения могут быть разными. В качестве примеров можно привести работу с флешкой, играющей роль накопителя для работы в режиме FTP или файл-сервера (см. «Функции/возможности»), соединение с принтером в режиме принт-сервера (см. там же), подключение 3G-модема (см. «Вход данных (WAN-port)») и т.п.

Конкретно же USB 2.0 позволяет передавать данные со скоростью до 480 Мбит/с. Это заметно меньше, чем у более продвинутых стандартов (начиная с описанного ниже USB 3.2 gen1), да и мощность питания у подобных разъемов невелика. Однако даже таких характеристик нередко оказывается вполне достаточно, с учетом специфики применения Wi-Fi устройств. Кроме того, к порту USB 2.0 можно подключить и периферию под более новые версии — главное, чтобы мощности питания хватило. Поэтому хотя этот стандарт считается устаревшим, он все еще широко применяется в современном беспроводном оборудовании. Встречаются даже модели, где предусматривается 2 и даже больше портов USB 2.0; это позволяет одновременно применять сразу несколько внешних устройств — например, 3G-модем и флешку.

Кол-во USB 3.2 gen1

Количество портов USB 3.2 gen1, предусмотренных в конструкции устройства.

USB в данном случае играет роль универсального интерфейса для подключения к роутеру периферийных устройств. Конкретные поддерживаемые USB-девайсы и способы их применения могут быть разными. В качестве примеров можно привести работу с флешкой, играющей роль накопителя для работы в режиме FTP или файл-сервера (см. «Функции/возможности»), соединение с принтером в режиме принт-сервера (см. там же), подключение 3G-модема (см. «Вход данных (WAN-port)») и т.п.

Конкретно же версия USB 3.2 gen1 (ранее известная как USB 3.0 и USB 3.1 gen1) является непосредственной наследницей USB 2.0, представившей, в частности, увеличенную в 10 раз (до 4,8 Гбит/с) максимальную скорость передачи данных и повышенную мощность питания. Правда, несмотря на общую популярность, этот стандарт пока сравнительно редко встречается в Wi-Fi устройствах — для многих задач хватает и USB 2.0. Тем не менее, ситуация постепенно меняется; а среди продвинутого оборудования, такого как игровые роутеры, можно встретить решения с 2 или более портами USB 3.2 gen1.

Wi-Fi антенн

В современном Wi-Fi оборудовании данный показатель может быть разным: помимо простейших устройств с 1 антенной, встречаются модели, где это число составляет 2, 3, 4 и даже более. Смысл использования нескольких антенн заключается в двух моментах. Во-первых, если на одну антенну приходится несколько внешних устройств — им приходится делить между собой полосу пропускания, и фактическая скорость связи для каждого абонента падает соответственно. Во-вторых, такая конструкция может потребоваться и при связи с одним внешним устройством — для работы с технологией MU-MIMO (см. ниже), позволяющей полностью реализовать возможности современных стандартов Wi-Fi.

В любом случае большее количество антенн, как правило, означает более продвинутое и функциональное устройство. С другой стороны, данный параметр заметно влияет на стоимость; так что специально искать оборудование с большим числом антенн имеет смысл в основном тогда, когда скорость и стабильность связи являются критически важными.

MU-MIMO

Поддержка устройством технологии MU-MIMO — многопользовательского многопотокового ввода-вывода.

Связь в несколько потоков реализуется за счет использования нескольких антенн как на передающем, так и на принимающем устройстве. Это позволяет увеличить пропускную способность канала, а также повысить общее качество и стабильность связи. А термин «многопользовательский» обычно означает, что Wi-Fi оборудование способно одновременно работать с несколькими внешними устройствами, поддерживающими многопотоковый режим (MIMO). Исключение составляют лишь Wi-Fi адаптеры (см. «Тип устройства») — в них речь идет скорее о способности максимально эффективно взаимодействовать с роутером/точкой доступа, где тоже используется MU-MIMO.

Съемная антенна

Наличие съемной антенны (или нескольких антенн) в конструкции устройства.

Съемными могут делаться исключительно внешние антенны (см. «Тип антенн»). Такая конструкция удобна прежде всего при хранении и транспортировке: она позволяет снять наружное оснащение, сделав устройство менее громоздким. Кроме того, многие устройства с данной особенностью допускают замену штатных антенн на другие (например, более мощные или с более оптимальной диаграммой направленности). Некоторые из подобных моделей даже изначально продаются без антенн — в расчете на то, что пользователь выберет их сам, на свое усмотрение; такая комплектация не нужна для бытового применения, зато бывает очень удобной при подборе высококлассного профессионального оборудования. С другой стороны, съемная конструкция снижает надежность крепления антенны, повышает вероятность сбоев в точке подключения и увеличивает стоимость устройства. Поэтому большинство современного Wi-Fi оборудования оснащается все же несъемными антеннами.
Asus RT-AC58U часто сравнивают
Asus RT-N66U часто сравнивают