Каталог   /   Компьютерная техника   /   Приставки и аксессуары   /   VR очки

Сравнение HTC Vive XR Elite vs HTC Vive Pro 2 Headset

Добавить в сравнение
HTC Vive XR Elite
HTC Vive Pro 2 Headset
HTC Vive XR EliteHTC Vive Pro 2 Headset
Товар устарелТовар устарел
Наушники имеют встроенный усилитель. Двойная фронтальная камера. Увеличенное разрешение AMOLED-матриц. Комфортная посадка. Огромная библиотека ПК-игр.
Требуется относительно мощный ПК и много свободного места в комнате.
Тип устройстваMR-очкиVR-очки
Назначениедля ПК / игровой приставкидля ПК / игровой приставки
Характеристики
Разрешение дисплея3840x1920 пикс4896x2448 пикс
Угол обзора110 °120 °
Встроенная память128 ГБ
Оперативная память12 ГБ
ПроцессорQualcomm Snapdragon XR2
Частота обновления90 к/с120 к/с
Акселерометр
Гироскоп
Датчик приближения
Отслеживание движений 6DoF
Настройка расстояния линз
Настройка межзрачкового расстояния
Мультимедиа
USB A
USB C++
DisplayPortv1.2
Bluetoothv 5.2+
Wi-FiWi-Fi 6 (802.11ax)
Микрофон
Наушники
Общее
Контроллер
Трек камера
Материал корпусапластикпластик
Дата добавления на E-Katalogмарт 2024февраль 2022
Что лучше, HTC Vive XR Elite или Vive Pro 2 Headset?

HTC Vive XR Elite часто сравнивают
HTC Vive Pro 2 Headset часто сравнивают
Глоссарий

Тип устройства

VR-очки. Шлемы или гарнитуры, которые показывают картинку прямо перед глазами и блокируют реальный мир, создавая ощущение, что вы находитесь внутри виртуального пространства. Через VR-очки вы видите не комнату вокруг, а цифровой мир: игры, симуляторы, виртуальные кинотеатры. В отличие от AR-очков, VR-очки полностью перекрывают реальный обзор и создают эффект присутствия «внутри» сцены, поэтому важны удобная посадка, хорошее разрешение и частота обновления, чтобы снизить укачивание и усталость глаз. Такие устройства используют геймеры, любители автосимов, авиасимуляторов, а также их применяют в обучении и 3D-презентациях техники или недвижимости.

AR-очки. Умные очки, которые накладывают цифровую информацию поверх реального мира: в поле зрения появляются подсказки, стрелки навигации, уведомления, 3D-модели. В отличие от VR-очков, AR-очки не перекрывают полностью окружающую среду, а дополняют её, поэтому они удобны в повседневной жизни, логистике, сервисе и обучении. Через AR-очки мастер может видеть подсказки по ремонту оборудования, а пользователь — схему прохода в ТЦ или перевод надписи. Важны лёгкий корпус, хорошая яркость изображения и точное отслеживание положения в пространстве.

MR-очки. Устройства смешанной реальности, которые совмещают элементы VR и AR и позволяют виртуальным объектам «жить» в реальном пространстве, учитывать пол, стены, м...ебель. В MR-очках 3D-модель может стоять на настоящем столе, а пользователь обходит её, смотрит с разных углов и взаимодействует жестами или контроллерами. В отличие от простых AR-очков, MR-очки используют более продвинутые датчики и камеры для сканирования помещения, поэтому подходят для инженерии, дизайна интерьеров, медицины, обучения персонала. Это уже не только «подсказка на стекле», а полноформатная работа с цифровыми объектами в реальной комнате.

FPV-очки. Специализированные очки для полётов от первого лица, которые показывают изображение с камеры дрона или другого радиоуправляемого устройства в режиме реального времени. В отличие от VR-очков, FPV-очки почти всегда «заточены» под одну задачу — дать пилоту максимально прямую и минимально задержанную картинку, чтобы точно управлять квадрокоптером, особенно в гонках или фристайле. Здесь важны низкая задержка сигнала, удобная посадка, совместимость с передатчиком и поддержка нужного формата видео.

3D видео-очки. Компактные очки или мини-шлемы, которые создают эффект объёмного изображения и большого экрана перед глазами, но без типичного «геймерского» функционала VR. Они могут подключаться к ноутбуку, медиаплееру, консоли и отображать фильмы, сериалы, 3D-контент или обычное видео, делая просмотр более приватным. В отличие от FPV-очков, которые показывают живую картинку с дрона, 3D видео-очки оптимизированы именно под медиаконтент: важны качество матрицы, контрастность, комфорт для длительного ношения. Их выбирают киноманы, часто путешествующие пользователи и те, кто не хочет занимать место под большой телевизор.

Разрешение дисплея

Разрешение встроенных дисплеев в очках, имеющих такое оснащение — то есть моделях для ПК/консолей, а также автономных устройствах (см. «Назначение»).

Чем выше разрешение — тем более сглаженную и детализированную «картинку» выдают очки, при прочих равных. Благодаря развитию технологий в наше время не редкостью являются модели с экранами Full HD (1920x1080) и даже более высоких разрешений. С другой стороны, этот параметр заметно сказывается на стоимости очков. Кроме того, стоит помнить, что для полноценной работы с дисплеями высокого разрешения нужна мощная графика, способная воспроизводить соответствующий контент. В случае очков для ПК и приставок это выдвигает соответствующие требования к внешним устройствам, а в автономных моделях приходится использовать продвинутые встроенные видеоадаптеры (что еще больше влияет на стоимость).

Угол обзора

Угол обзора, обеспечиваемый очками виртуальной реальности — то есть угловой размер пространства, попадающего в поле зрения пользователя. Как правило, в характеристиках указывается размер этого пространства по горизонтали; впрочем, если необходима максимально точная информация, этот момент не помешает уточнить отдельно.

Чем шире угол обзора — тем больше игрового пространства пользователь может видеть, не поворачивая головы, тем мощнее эффект погружения и тем меньше вероятности, что изображение будет подвержено эффекту «туннельного зрения». С другой стороны, делать поле зрения слишком обширным тоже не имеет смысла с учетом особенностей человеческого глаза. В целом большим углом обзора считается угол, составляющий 100° и более. С другой стороны, встречаются модели, где этот показатель составляет 30° и даже меньше — это, как правило, специфические устройства (например, очки для пилотирования дронов и очки дополненной реальности), где подобные характеристики вполне оправданы с учетом общего функционала.

Встроенная память

Объем встроенного накопителя, установленного в очках.

Таким накопителем оснащаются только самостоятельные устройства (см. «Назначение») — он используется для хранения программной прошивки, а также различного дополнительного контента (приложений, панорамных фильмов и т.п.). Чем больше объем накопителя — тем больше такого контента можно хранить на устройстве; с другой стороны, эта характеристика напрямую влияет на цену. Также стоит учитывать, что некоторые модели позволяют дополнить встроенное хранилище картой памяти (подробнее см. «Картридер»).

Для современных очков виртуальной реальности наиболее скромным объемом является 16 ГБ — устанавливать меньшие накопители технически нецелесообразно. В продвинутых моделях этот показатель может достигать 128 ГБ.

Оперативная память

Объем оперативной памяти (RAM), установленной в очках.

Данный параметр актуален только для самостоятельных устройств (см. «Назначение»). Теоретически чем больше оперативной памяти в гаджете — тем выше его мощность, тем быстрее он способен работать и тем лучше справляется с «тяжелыми» задачами. Однако на практике эта характеристика имеет больше справочное, нежели практическое значение. Во-первых, возможности автономных очков сильно зависят еще и от используемых процессора и видеоадаптера. Во-вторых, объем памяти подбирается таким образом, чтобы очки гарантированно могли справляться с задачами, для которых изначально предназначены. Собственно, проблемы могут возникнуть лишь с запуском очень требовательных приложений или ресурсоемкого видео (например, 4K-роликов панорамного формата); так что обращать внимание на объем RAM имеет смысл лишь в том случае, если вы планируете использовать очки для подобных целей.

Что касается конкретных объемов, то они в современных устройствах составляют от 2 до 4 ГБ.

Процессор

Модель процессора, установленного в очках.

Эта информация указывается в основном для самостоятельных устройств (см. «Назначение») — именно в них от модели процессора напрямую зависят возможности очков в целом. А зная название чипа, можно найти подробные данные по нему и оценить его эффективность. В то же время на практике подобная необходимость возникает крайне редко: производители выбирают процессоры с таким расчетом, чтобы очки можно было без проблем использовать по основному назначению. Так что при выборе стоит обращать внимание на более практические параметры — разрешение дисплея, частоту обновления и т. п.

Частота обновления

Частота обновления, поддерживаемая встроенными экранами очков, проще говоря — максимальная частота кадров, которую способны выдавать экраны.

Напомним, экраны предусматриваются в моделях для ПК/консолей и в автономных устройствах (см. «Назначение»). А от данного показателя напрямую зависит качество картинки: при прочих равных более высокая частота кадров обеспечивает более плавное изображение, без рывков и с хорошей детализацией в динамичных сценах. Обратная сторона этих преимуществ — увеличение цены.

Также стоит учитывать, что в некоторых случаях фактическая частота кадров будет ограничиваться не возможностями очков, а характеристиками внешнего устройства или свойствами проигрываемого контента. Например, относительно слабая видеокарта ПК может «не вытянуть» сигнал с высокой частотой кадров, или определенная частота может быть задана в игре и не предусматривать возможности повышения. Поэтому не стоит гнаться за большими значениями и достаточно будет очков частотой 90 к/с.

Датчик приближения

Наличие в очках датчика, реагирующего на приближение к лицу пользователя.

Подобный датчик используется для автоматического переключения между рабочим режимом и режимом ожидания: к примеру, когда пользователь снимает очки, датчик отключает встроенные экраны (или телефон, если он подключается к очкам через разъём), экономя заряд батареи и ресурс оборудования, а при надевании — включает очки на полный функционал.

USB A

Наличие в очках хотя бы одного разъема USB A. Это полноразмерный разъем USB, такого же типа, как стандартные USB-порты в компьютерах и ноутбуках. А вот его функции могут быть разными, в зависимости от функционала очков (см. «Назначение»). Так, в моделях для ПК и консолей USB — это один из разъемов подключения, используемый в связке с видеоинтерфейсом типа HDMI или DisplayPort: по видеоразъему передается изображение, а через USB-соединение — данные с датчиков на очках, необходимые для изменения картинки и создания «эффекта погружения». А в самостоятельных устройствах USB A используется для подключения различных дополнительных аксессуаров — например, флешек с приложениями или другим контентом. Также возможно применение этого разъема для зарядки аккумулятора, хотя такой способ использования в целом для него не характерен.