Казахстан
Каталог   /   Климат, отопление и водоснабжение   /   Отопление и котлы   /   Тепловые насосы

Сравнение Raymer RAY-10MN 10 кВт vs Axioma AXHP-EVIDC-9M 10 кВт

Добавить в сравнение
Raymer RAY-10MN 10 кВт
Axioma AXHP-EVIDC-9M 10 кВт
Raymer RAY-10MN 10 кВтAxioma AXHP-EVIDC-9M 10 кВт
Товар устарелТовар устарел
Работа при -30° С.
Источниквоздух-водавоздух-вода
Назначениеотопление и ГВСотопление и ГВС
Комплектация
Комплектация
внешний блок (моноблок)
внешний блок (моноблок)
Характеристики
Режим работынагрев и охлаждениенагрев и охлаждение
Макс. тепловая мощность10.8 кВт10.3 кВт
Макс. мощность охлаждения7.6 кВт8.2 кВт
Мощность потребления (нагрев)2.58 кВт3.2 кВт
Мощность потребления (охлаждение)2.64 кВт5.2 кВт
Коэффициент EER2.672.82
Источник питания1ф (230 В)1ф (230 В)
Мин. рабочая t-20 °C-30 °C
Макс. t теплоносителя60 °C60 °C
Компрессор
инверторный
инверторный
Энерогоэффективность
При t°C наружной7
Подача t°C35 °C
Коэффициент COP4.19
Коэффициент SCOP (W35)4.29
Класс энергопотребления (W35)A++
Коэффициент SCOP (W55)3.36
Класс энергопотребления (W55)A++
Общее
Управление со смартфона++
ХладагентR410AR32
Уровень шума внешнего блока57 дБ46 дБ
Габариты внешнего блока725x1120x460 мм800x1005x375 мм
Вес внешнего блока88 кг70 кг
Дата добавления на E-Katalogноябрь 2023июль 2023
Глоссарий

Макс. тепловая мощность

Наибольшая тепловая мощность, вырабатываемая тепловым насосом — то есть количество тепла, которое он способен «перекачать» снаружи в систему отопления и/или ГВС.

Тепловая мощность является важнейшей характеристикой теплового насоса — она напрямую определяет его эффективность и способность обеспечить необходимое количество тепла. Отметим, что данный показатель указывается для оптимальных условий работы — в частности, довольно высокой наружной температуры. На практике такие условия встречаются редко, поэтому фактическая мощность обычно заметно ниже максимальной; это нужно учитывать при выборе. Существуют специальные формулы для расчёта оптимального значения максимальной тепловой мощности в зависимости от конкретной ситуации.

Макс. мощность охлаждения

Максимальная тепловая мощность, выдаваемая насосом в режиме охлаждения.

При такой работе насос функционирует в обратном цикле — отводя излишек тепла из помещения в окружающую среду, то есть, по сути, играет роль кондиционера. Необходимая мощность охлаждения зависит от площади здания, особенностей его теплоизоляции и некоторых других факторов; способы её расчёта можно найти в специальных источниках. Здесь же отметим, что обычное отопительное оборудование (радиаторы, тёплые полы) для работы на охлаждение не подходит, для этого необходимо использовать специальное оборудование (например, фанкойлы).

Мощность потребления (нагрев)

Электрическая мощность, потребляемая тепловым насосом при работе только на перекачку тепла, без использования догревательного ТЭНа (при его наличии, см. ниже). Отношение тепловой мощности к потребляемой мощности определяет тепловой коэффициент СОР (см. ниже) и, соответственно, общую эффективность агрегата. Также от этого показателя зависит общее энергопотребление (и, соответственно, счета за электричество), а также некоторые требования по питанию и подключению — например, модели с питанием от 220 В и мощностью более чем 5 кВт не могут работать от розетки и требуют специального формата подключения к сети.

Мощность потребления (охлаждение)

Подробнее о мощности потребления смотрите пункт выше. Здесь же отметим, что в данном пункте указывается расход электроэнергии при работе в режиме охлаждения.

Коэффициент EER

Коэффициент охлаждения ЕЕR представляет собой соотношение полезной рабочей мощности теплового насоса в режиме охлаждения к потреблению электроэнергии.

Чем выше данный показатель — тем более экономичным является устройство и тем выше его класс энергоэффективности при охлаждении. Собственно, для каждого класса имеются свои чёткие требования по EER.

Мин. рабочая t

Наименьшая температура среды (воздуха или грунта, см. «Источник»), при которой тепловой насос может безопасно и достаточно эффективно выполнять свои функции. Эффективность при минимальной температуре, разумеется, заметно снижается, однако устройство всё равно можно использовать в качестве источника тепла.

Данные о минимальной рабочей t позволяют оценить пригодность насоса для холодного времени года.

При t°C наружной

Наружная температура, для которой приводится коэффициент COP. Подробнее об этом коэффициенте и значении наружной температуры см. ниже.

Подача t°C

Температура в прямом трубопроводе, для которой указан коэффициент COP. Подробнее об этом коэффициенте см. ниже. А данная температура — это температура теплоносителя на выходе из насоса, при которой достигается приведенное значение COP.

Отметим, что производители нередко идут на хитрость и замеряют COP для сравнительно невысокой температуры (заметно ниже, чем максимальная температура теплоносителя — например, 35 °С для модели с максимумом в 55 °С). Это позволяет приводить в характеристиках довольно внушительные цифры эффективности. Однако при более высоких температурах фактические затраты энергии на единицу тепловой мощности будут больше, и фактический COP будет ниже.

Коэффициент COP

Тепловой коэффициент COP (coefficient of performance) является ключевой характеристикой, описывающей общую эффективность и экономичность работы теплового насоса. Он представляет собой соотношение между тепловой и потребляемой мощностью агрегата (см. выше) — проще говоря, сколько киловатт тепловой энергии вырабатывает насос на 1 кВт затраченного электричества. В современных тепловых насосах этот показатель может превышать 5.

Однако стоит учитывать, что фактическое значение COP может быть разным в зависимости от температуры снаружи и температуры подачи. Чем выше разница между этими температурами — тем больше затрат нужно на «перекачивание» тепловой энергии и тем ниже будет COP. Поэтому в характеристиках принято указывать значение COP для конкретных значений температур (а во многих моделях — два значения, для разных вариантов) — это позволяет оценить фактические возможности агрегата.
Axioma AXHP-EVIDC-9M часто сравнивают