Казахстан
Каталог   /   Компьютерная техника   /   Комплектующие   /   Системы охлаждения

Сравнение Gamemax FN-12Rainbow-M vs Gamemax GMX-WFBK BK

Добавить в сравнение
Gamemax FN-12Rainbow-M
Gamemax GMX-WFBK BK
Gamemax FN-12Rainbow-MGamemax GMX-WFBK BK
Сравнить цены 1Сравнить цены 1
ТОП продавцы
Основное
Назначениев корпусв корпус
Типвентиляторвентилятор
Вентилятор
Кол-во вентиляторов1 шт1 шт
Диаметр вентилятора120 мм120 мм
Толщина вентилятора25 мм25 мм
Тип подшипникагидродинамическийгидродинамический (Hydraulic Bearing)
Максимальные обороты1100 об/мин1100 об/мин
Макс. воздушный поток53 CFM46.5 CFM
Наработка на отказ30 тыс. ч
Уровень шума24 дБ23 дБ
Источник питания3-pin3-pin и MOLEX
Общее
Подсветка
Цвет подсветкиARGB
Синхронизация подсветкиmulti compatibility
Тип крепленияболтыболты
Габариты120x120x25 мм120x120x25 мм
Вес110 г
Дата добавления на E-Katalogмай 2021январь 2019
Глоссарий

Тип подшипника

Тип подшипника, используемого в вентиляторе (вентиляторах) системы охлаждения.

Подшипник — это деталь между вращающейся осью вентилятора и неподвижным основанием, которая поддерживает ось и снижает трение. В современных вентиляторах встречаются такие типы подшипников:

Скольжения. Действие таких подшипников основано на прямом контакте между двумя сплошными поверхностями, тщательно отполированными для снижения трения. Подобные приспособления просты, надежны и долговечны, однако эффективность их достаточно невысока — качение, а тем более гидродинамический и магнитный принцип работы (см. ниже) обеспечивают значительно меньшее трение.

Качения. Также называются «шарикоподшипниками», так как «посредниками» между осью вращения и неподвижным основанием являются шарики (реже — цилиндрические ролики), закрепленные в специальном кольце. При вращении оси такие шарики катятся между ней и основанием, за счет чего сила трения получается очень невысокой — заметно ниже, чем в подшипниках скольжения. С другой стороны, конструкция получается более дорогой и сложной, а по надежности она несколько уступает как тем же подшипникам скольжения, так и более продвинутым гидродинамическим приспособлениям (см. ниже). Поэтому, хотя подшипники качения в наше время достаточно широко распространены, однако в целом они встречаются заметно реже упомянутых разновидностей.

Гидродинамический. Подшипники этого типа заполнены специальной жидкостью; при вращении она создаёт прослойку, по которой скользит подвижная часть подшипника. Таким образом удаётся избежать непосредственного контакта между твёрдыми поверхностями и значительно снизить трение по сравнению с предыдущими типами. Также такие подшипники тихо работают и весьма надёжны. Из их недостатков можно отметить сравнительно высокую стоимость, однако на практике этот момент нередко оказывается незаметным на фоне цены всей системы. Поэтому данный вариант в наше время чрезвычайно популярен, его можно встретить в системах охлаждения всех уровней — от бюджетных до продвинутых.

Магнитное центрирование. Подшипники, основанные на принципе магнитной левитации: вращающаяся ось «подвешена» в магнитном поле. Таким образом удаётся (как и в гидродинамических) избежать контакта между твёрдыми поверхностями и ещё больше снизить трение. Считаются наиболее продвинутым типом подшипников, надёжны и бесшумны, однако стоят дорого.

Макс. воздушный поток

Максимальный воздушный поток, который может создать вентилятор системы охлаждения; измеряется в CFM — кубических футах в минуту.

Чем выше число CFM — тем эффективнее вентилятор. С другой стороны, высокая производительность требует либо большого диаметра (что сказывается на габаритах и стоимости), либо высокой скорости (а она повышает уровень шума и вибраций). Поэтому при выборе имеет смысл не гнаться за максимальным воздушным потоком, а воспользоваться специальными формулами, позволяющими рассчитать необходимое число CFM в зависимости от типа и мощности охлаждаемого компонента и других параметров. Такие формулы можно найти в специальных источниках. Что же касается конкретных чисел, то в наиболее скромных системах производительность не превышает 30 CFM, а в наиболее мощных может составлять свыше 80 CFM.

Также стоит учитывать, что фактическое значение воздушного потока на наибольших оборотах обычно ниже заявленного максимального; подробнее см. «Статическое давление».

Наработка на отказ

Общее время, которое вентилятор системы охлаждения способен гарантированно проработать до выхода из строя. Отметим, что при исчерпании этого времени устройство не обязательно сломается — многие современные вентиляторы имеют значительный запас прочности и способны проработать ещё какой-то период. В то же время оценивать общую долговечность системы охлаждения стоит именно по данному параметру.

Уровень шума

Стандартный уровень шума, создаваемого системой охлаждения при работе. Обычно в данном пункте указывается максимальный шум при штатном режиме работы, без перегрузок и прочего «экстрима».

Отметим, что уровень шума обозначается в децибелах, а это нелинейная величина. Так что оценивать фактическую громкость проще всего по сравнительных таблицам. Вот такая таблица для значений, встречающихся в современных системах охлаждения:

20 дБ — еле слышимый звук (тихий шёпот человека на расстоянии около 1 м, звуковой фон на открытом поле за городом в безветренную погоду);
25 дБ — очень тихо (обычный шёпот на расстоянии 1 м);
30 дБ — тихо (настенные часы). Именно такой шум по санитарным нормам является максимально допустимым для постоянных источников звука в ночное время (с 23.00 до 7.00). Это значит, что если компьютером планируется сидеть ночью — желательно, чтобы громкость системы охлаждения не превышала данного значения.
35 дБ — разговор вполголоса, звуковой фон в тихой библиотеке;
40 дБ — разговор, сравнительно негромкий, но уже в полный голос. Максимально допустимый по санитарным нормам уровень шума для жилых помещений в дневное время, с 7.00 до 23.00. Впрочем, даже самые шумные системы охлаждения обычно не дотягивают до данного показателя, максимум для подобной техники составляет около 38 – 39 дБ.

Источник питания

Тип разъёма питания для системы охлаждения. Питание обычно выводится через материнскую плату, для этого чаще всего применяются такие разъёмы:

3-pin. Трёхштырьковый разъём; на сегодняшний день считается устаревшим, однако всё ещё применяется достаточно широко.

4-pin. Разъём с 4 штырьками. Его главным достоинством является возможность автоматической регулировки скорости вращения через PWM (подробнее см. «Регулятор оборотов»).

Эти два стандарта взаимно совместимы: 3-pin вентилятор можно подключить в 4-pin разъём на материнской плате, и наоборот (разве что PWM в обоих случаях будет недоступна).

Значительно реже встречаются такие варианты, как 2-pin, устанавливаемый в некоторые недорогие вентиляторы; 6-pin, применяемый в системах охлаждения с RGB-подсветкой, требующей довольно мощного дополнительного питания; 7-pin и 8-pin, по своей специфике аналогичные 6-пиновому разъему; а также питание через стандартный штекер MOLEX, предусматриваемое в отдельных корпусных вентиляторах.

Подсветка

Наличие собственной подсветки в конструкции системы охлаждения.

Подсветка выполняет чисто эстетическую функцию — она придает устройству стильный внешний вид, хорошо сочетающийся с другими компонентами в оригинальном дизайне. Благодаря этому подобные системы охлаждения собенно ценятся геймерами и любителями внешнего моддинга ПК — тем более что свет освещения может быть разным, а в наиболее продвинутых моделях даже предусматривается синхронизация подсветки с другими компонентами (см. ниже). С другой стороны, на эффективность и рабочие характеристики данная функция не влияет, а на общей стоимости — неизбежно сказывается, иногда весьма заметно. Поэтому, если внешний вид не играет для вас принципиальной роли — оптимальным выбором, скорее всего, станет система охлаждения без подсветки.

Цвет подсветки

Цвет подсветки, установленной в системе охлаждения.

Подробнее о самой подсветке см. выше. Здесь же отметим, что в подсветке современных систем охлаждения встречается как один цвет (чаще всего красный или синий, реже зеленый, желтый, белый или фиолетовый), так и многоцветные системы типа RGB и ARGB. Выбор одноцветной подсветки зависит в основном от эстетических предпочтений, а вот последних двух разновидностей стоит коснуться отдельно.

Базовый принцип работы и RGB, и ARGB-систем одинаков: в конструкции предусматривается набор светодиодов трех базовых цветов — красного (Red), зеленого (Green) и синего (Blue), а изменяя количество и яркость включенных светодиодов, можно не только интенсивность, но и оттенок свечения. Различие же между этими вариантами различается в функционале: системы RGB поддерживают ограниченный набор цветов (обычно до полутора десятков, а то и меньше), тогда как ARGB позволяют выбирать практически любой оттенок из всего доступного цветового диапазона. При этом и те, и другие могут поддерживать синхронизацию подсветки (см. ниже); в целом эта функция не является обязательной для RGB и ARGB систем, но применяется она почти исключительно в них.

Синхронизация подсветки

Технология синхронизации подсветки, предусмотренная в системе охлаждения со встроенным освещением (см. выше).

Сама по себе синхронизация позволяет «согласовать» подсветку охлаждения с подсветкой других компонентов системы — материнской платы, процессора, видеокарты, корпуса, клавиатуры, мыши и т. п. Благодаря этому согласованию все компоненты могут синхронно менять цвет, одновременно включаться/отключаться и т. п. Конкретные особенности работы такой подсветки зависят от применяемой технологии синхронизации, а она, как правило, у каждого производителя своя (Aura Sync у Asus, RGB Fusion у Gigabyte и т. п.). Также от этого зависит совместимость компонентов: все они должны поддерживать одну технологию. Так что проще всего добиться совместимости подсветки, собрав комплектующие от одного производителя. Впрочем, среди систем охлаждения существуют решения формата multi compatibility — совместимые сразу с несколькими технологиями синхронизации; конкретный список совместимости обычно указывается в подробных характеристиках таких моделей.