Тип монтировки
Тип монтировки, которой оснащен телескоп.
Монтировка — это механический узел, с помощью которого телескоп крепится к штативу или ( в отдельных случаях) устанавливается прямо на землю. Помимо крепления, этот узел отвечает также за наведение оптики в определенную точку неба. Наибольшей популярностью в наше время пользуются
азимутальные приспособления в разных вариациях —
AZ1,
AZ2,
AZ3, а также в виде так называемой
монтировки Добсона.
Экваториальные механизмы разных моделей (
EQ1,
EQ2,
EQ3,
EQ4,
EQ5) заметно сложнее и дороже, зато и возможностей дают больше. Встречаются системы, сочетающие сразу оба этих типа монтировок — так называемые азимутально-экваториальные. И, наконец, отдельные телескопы и вовсе поставляются
без монтировки. Вот более подробное описание этих вариантов:
— Азимутальная. Полное название — «альт-азимутальная». Традиционно имеет две оси поворота телескопа — одну для наведения по высоте, вторую по азимуту. Разные модели таких монтировок различаются по дополнительным возможностям управления:
- AZ1. Не имеют системы точного движения.
...i>AZ2. Оснащены системой точного движения по вертикали (вокруг горизонтальной оси).
- AZ3. Оснащены системами точного движения по обеим осям.
В любом случае вторая ось (азимутальная) в таких системах всегда располагается вертикально, вне зависимости от географического положения телескопа; в этом и состоит ключевое отличие от описанных ниже экваториальных монтировок. В целом азимутальные механизмы достаточно просты и недороги сами по себе, при этом вполне удобны и практичны, благодаря чему именно данный вариант пользуется наибольшей популярностью в наше время. Кроме того, они идеально подходят для наблюдений за наземными объектами. Ключевым недостатком данного варианта является слабая пригодность к непрерывному «сопровождению» небесных тел (движущихся по небосводу вследствие вращения Земли). Если в правильно настроенном экваториальном механизме для этого нужно поворачивать телескоп всего по одной оси, то в азимутальном нужно задействовать обе оси, причем неравномерно. Ситуацию можно решить при помощи системы автослежения, но эта функция заметно влияет на цену всего прибора. И даже ее наличие не гарантирует, что телескоп подойдет для астрофотографии на длительных выдержках — ведь при таком использовании нужно обеспечивать не только точное движение по каждой отдельной оси, но еще поправку на поворот изображения в кадре (что предусматривается далеко не в каждой системе автослежения и еще более увеличивает цену).
— Добсона. Специфическая разновидность описанных выше азимутальных монтировок, применяемая почти исключительно в рефлекторах. Также предусматривает две оси вращения — горизонтальную и вертикальную. Ключевой особенностью монтировки Добсона является то, что она не рассчитана на штатив и устанавливается прямо на землю или другую ровную поверхность; для этого в конструкции предусматривается широкое массивное основание. Подобные системы отлично подходят для телескопов Ньютона, у которых окуляр располагается в передней части: благодаря низкому расположению тубуса на монтировке сам окуляр оказывается на достаточно удобной высоте. Также к преимуществам «добсонов» можно отнести простоту, невысокую стоимость и в то же время хорошую надежность, делающую их пригодными даже для крупных и тяжелых телескопов. Из недостатков нужно отметить слабую совместимость с неровными поверхностями, особенно твердыми, вроде сплошной скалы (тогда как штативы, используемые с другими типами монтировок, этого недостатка лишены).
— Экваториальная. Монтировки этого типа позволяют синхронизировать движение телескопа с движением небесных тел по небосводу, возникающим из-за вращения Земли. Условную вертикальную ось, отвечающую за поворот телескопа из стороны в сторону, в таких механизмах называют осью прямого восхождения (R.A.), а горизонтальную (для наведения по условной вертикали) — осью склонений (Dec.). Перед использованием экваториальная монтировка настраивается так, чтобы ось прямого восхождения была направлена на «полюс мира», параллельно оси вращения Земли («оси мира»); конкретный наклон относительно вертикали зависит от географической широты места наблюдений. Такой формат работы заметно усложняет как конструкцию самой монтировки, так и процедуру ее установки. С другой стороны, экваториальные системы идеально подходят для длительного «сопровождения» астрономических объектов: чтобы компенсировать движение небесного тела из-за вращения Земли и удерживать цель в поле зрения, достаточно вращать телескоп вокруг оси R.A. вправо (по часовой стрелке), причем с четко определенной скоростью — 15° в час, независимо от положения объекта по вертикали. Это делает подобные конструкции идеальным вариантом для астрофотографии — в том числе объектов дальнего космоса, для которых требуются длительные выдержки. Фактически для этого даже не нужна полноценная система автослежения — достаточно сравнительно простого часового механизма, вращающего телескоп вокруг оси прямого восхождения. Обратной стороной этих преимуществ, помимо упомянутой сложности и высокой стоимости, является слабая пригодность для крупных тяжелых телескопов — с увеличением веса прибора вес подходящей экваториальной системы увеличивается еще быстрее.
Что касается разных моделей подобных монтировок, то они маркируются буквенно-цифровым индексом, от EQ1 до EQ5. В целом чем больше число в обозначении — тем крупнее и тяжелее сама конструкция (включая треногу, если она поставляется в комплекте), тем хуже она подходит для перемещения с места на место, однако тем лучше гасит вибрации и сотрясения. А вот ограничения по весу телескопа с моделью экваториальной монтировки напрямую не связаны.
— Азимутально-экваториальная. Механизмы, сочетающие в себе сразу два типа монтировок. Выглядит это так: на штатив установлена азимутальная система, а на ней — экваториальная, в которой уже крепится телескоп. Подобная конструкция позволяет использовать возможности обеих типов монтировки. Так, азимутальный механизм вполне подходит для наблюдений за крупными небесными телами ближнего космоса (Луна, планеты) и обширными участками неба (такими, как созвездия), при этом он не требует сложной предварительной настройки. А для астрофотосъемки или для рассматривания объектов дальнего космоса на больших увеличениях удобнее использовать экваториальную систему. Однако на практике подобная универсальность требуется крайне редко, притом что сочетание двух типов монтировок усложняет конструкцию, увеличивает ее стоимость и снижает надежность. Так что этот вариант можно встретить в единичных моделях телескопов.
— Без монтировки. Полное отсутствие монтировочной системы в комплекте не позволяет применять телескоп «из коробки». Тем не менее, оно бывает оптимальным вариантом в некоторых случаях. Первый — если пользователь хочет выбрать монтировку на свое усмотрение, не полагаясь на решение производителя, или даже собрать ее самостоятельно (так, довольно много астрономов изготавливают свои собственные системы Добсона). Второй характерный случай — если в хозяйстве уже есть монтировка (например, от старого телескопа, пришедшего в негодность), и переплачивать за вторую просто незачем. В любом случае при выборе подобной модели стоит обращать особое внимание на тип крепления, на который рассчитана труба — от него напрямую зависит совместимость с конкретной монтировкой.
Разрешающая способность (Dawes)
Разрешающая способность телескопа, определённая согласно критерию Дауэса (Dawes). Также этот показатель называют «предел Дауэса». (Встречается также прочтение «Дейвса», но оно не является верным).
Разрешающая способность в данном случае — это показатель, характеризующий способность телескопа различить отдельные источники света, расположенные на близком расстоянии, иными словами — способность увидеть их именно как отдельные объекты. Измеряется этот показатель в угловых секундах (1'' — это 1/3600 часть градуса). На расстояниях, меньших, чем разрешающая способность, эти источники (например, двойные звёзды) будут сливаться в сплошное пятно. Таким образом, чем ниже цифры в данном пункте — тем выше разрешающая способность, тем лучше телескоп подходит для разглядывания близко расположенных объектов. Однако стоит учитывать, что в данном случае речь идёт не о возможности видеть полностью отдельные друг от друга объекты, а лишь о возможности опознать в вытянутом световом пятне два источника света, слившиеся (для наблюдателя) в один. Для того, чтобы наблюдатель мог видеть два отдельных источника, расстояние между ними должно быть приблизительно вдвое больше заявленной разрешающей способности.
Согласно критерию Дауэса разрешающая способность напрямую зависит от диаметра объектива телескопа (см. выше): чем крупнее апертура, тем меньше может быть угол между отдельно видимыми объектами и тем выше разрешающая способность. По общему принципу этот показатель аналогичен...критерию Рэлея (см. «Разрешающая способность (Rayleigh)»), однако он был выведен экспериментальным путём, а не теоретически. Поэтому, с одной стороны, предел Дауэса точнее описывает практические возможности телескопа, с другой — соответствие этим возможностям во многом зависит субъективных особенностей наблюдателя. Проще говоря, человек без опыта наблюдений за двойными объектами, или имеющий проблемы со зрением, может попросту «не узнать» в вытянутом пятне два источника света, если они будут располагаться на расстоянии, сравнимом с пределом Дауэса. Дополнительно о разнице между критериями см. «Разрешающая способность (Rayleigh)».
Разрешающая способность (Rayleigh)
Разрешающая способность телескопа, определённая согласно критерию Рэлея (Rayleigh).
Разрешающая способность в данном случае — это показатель, характеризующий способность телескопа различить отдельные источники света, расположенные на близком расстоянии, иными словами — способность увидеть их именно как отдельные объекты. Измеряется этот показатель в угловых секундах (1'' — это 1/3600 часть градуса). На расстояниях, меньших, чем разрешающая способность, эти источники (например, двойные звёзды) будут сливаться в сплошное пятно. Таким образом, чем ниже цифры в данном пункте — тем выше разрешающая способность, тем лучше телескоп подходит для разглядывания близко расположенных объектов. Однако стоит учитывать, что в данном случае речь идёт не о возможности видеть полностью отдельные друг от друга объекты, а лишь о возможности опознать в вытянутом световом пятне два источника света, слившиеся (для наблюдателя) в один. Для того, чтобы наблюдатель мог видеть два отдельных источника, расстояние между ними должно быть приблизительно вдвое больше заявленной разрешающей способности.
Критерий Рэлея является теоретической величиной и рассчитывается по довольно сложным формулам, учитывающим, помимо диаметра объектива телескопа (см. выше), также длину волны наблюдаемого света, расстояния между объектами и до наблюдателя и т.п. Отдельно видимыми, согласно данному методу, считаются объекты, расположенные на большем расстоянии друг от друга, чем для описанного выше пред...ела Дауэса; поэтому для одного и того же телескопа разрешающая способность по Рэлею будет ниже, чем по Дауэсу (а цифры, указанные в данном пункте — соответственно, больше). С другой стороны, данный показатель меньше зависит от личных особенностей пользователя: различить объекты на расстоянии, соответствующем критерию Рэлея, могут даже неопытные наблюдатели.
Окуляры
В данном пункте указываются окуляры, входящие в штатный комплект поставки телескопа, точнее — фокусные расстояния этих окуляров.
Имея эти данные и зная фокусное расстояние телескопа (см. выше), можно определить степени увеличения, которые устройство может выдавать в комплектации «из коробки». Для телескопа без линз Барлоу (см. ниже) и других дополнительных элементов подобного назначения кратность будет равна фокусному расстоянию объектива, поделенному на фокусное расстояние окуляра. Например, оптика на 1000 мм, укомплектованная «глазками» на 5 и 10 мм, будет способна выдать увеличения 1000/5=200х и 1000/10=100х.
При отсутствии подходящего окуляра в комплекте его, как правило, можно докупить отдельно.
Просветление оптики
Наличие просветляющего покрытия на поверхности линз, а иногда — также призм телескопа. Такое покрытие создает на стеклянной поверхности характерные цветные блики или радужные разводы.
Смысл просветления понятен уже из названия: такая особенность улучшает общее светопропускание, обеспечивая таким образом более светлое, четкое и качественное изображение. Для телескопов это особенно важно, поскольку такие приборы применяются в основном в ночное время и имеют дело с очень небольшим количеством света. Общий принцип работы просветляющих покрытий состоит в том, что они снижают коэффициент отражения линзы/призмы, позволяя большему количеству света проходить через нее. На практике это реализуется так: свет проходит через покрытие до основного стекла, отражается от него, однако вместо того, чтобы рассеяться — достигает границы между покрытием и воздухом и отражается уже от нее, разворачиваясь «обратно» в первоначальное направление. Подобным образом можно снизить потери света на отражение с 5 % (линза без покрытия) до 1 % при однослойном и 0,2 % и даже менее при многослойном просветлении; при этом, благодаря микроскопической толщине, подобные покрытия не вносят геометрических искажений в видимое изображение.
Как правило, тип просветления дополнительно уточняется в документации производителя, и а иногда и прямо в характеристиках. Всего основных типов 4, вот их основные особенности:
— Однослойное (C). Один слой покрытия на отдельных (не на всех) оптических...элементах, а чаще всего — и вовсе только лишь на внешней поверхности объектива. Это наиболее простой и недорогой вариант, применяемый в основном в недорогих моделях, не рассчитанных на серьезные задачи. Связано это с тем, что в целом однослойное просветление действует лишь на часть видимого спектра, из-за чего уступает многослойному как по эффективности, так и по достоверности цветопередачи (иногда искажения цветов могут быть весьма заметными). А в данном случае такое покрытие еще и нанесено не на все, а лишь на отдельные детали оптической системы. Так что хотя однослойное просветление лучше, чем вообще никакого, но подходит оно в основном для развлекательного применения.
— Полное однослойное (FC). Однослойное покрытие, нанесенное на все оптические элементы телескопа. Дает максимальную эффективность, доступную для подобных покрытий в принципе. Однако поскольку данный тип покрытия эффективен лишь для относительно небольшой части видимого спектра, то качество передачи цветов все равно получается ниже, чем в многослойных системах.
— Многослойное (MC). Покрытие из нескольких слоев с разными показателями преломления, нанесенное на один или на несколько элементов оптики (но не на все). Количество слоев может быть разным — от 2 – 3 в сравнительно недорогих решениях до 6 – 8 и более в высококлассных телескопах. Однако даже сравнительно простые многослойные покрытия перекрывают практически весь видимый спектр и в разы превосходят однослойные по степени снижения отражений. Так что если для вас важны хорошая яркость и достоверная цветопередача — то данный вариант будет более предпочтительным, чем даже полное однослойное просветление, не говоря уже о неполном. С другой стороны, и обходится такая оптика дороже решений с одним слоем просветляющего покрытия.
— Полное многослойное. Наиболее продвинутый тип просветления: многослойное покрытие, нанесенное на все элементы оптической системы. Этот вариант обеспечивает чрезвычайно высокое светопропускание и достоверную цветопередачу, однако и обходится недешево. Поэтому его можно встретить в основном среди высококлассных телескопов; а специально искать модель с таким просветлением стоит тогда, когда и яркость картинки, и достоверность цветов имеют для вас принципиальное значение.
Зеркало
Тип зеркала, установленного в рефлекторе или комбинированной модели (см. «Конструкция»).
Напомним, зеркало в таких моделях выполняет ту же функцию, что и линза объектива в классических телескопах-рефракторах — то есть непосредственно отвечает за увеличение изображения. Тип зеркала указывается по его общей форме:
— Сферическое. Наиболее распространенный вариант, что связано в первую очередь с простотой производства и, как следствие, невысокой стоимостью. С другой стороны, сферическое зеркало чисто технически не способно так эффективно сконцентрировать пучок света, как это делает параболическое. Из-за этого возникают искажения, известные как сферические аберрации; они могут привести к заметному ухудшению резкости, причем наиболее заметным этот эффект становиться на высоких кратностях. Правда, есть телескопы, практически не подверженные этому явлению — а именно длиннофокусные модели, в которых фокусное расстояние в 8 – 10 раз превышает диаметр зеркала; однако такие приборы получаются громоздкими и тяжелыми. В свете этого специально искать модели с таким типом зеркал стоит в основном в двух случаях: либо если телескоп планируется применять на сравнительно небольшой кратности (например, для наблюдений за Луной, планетами, созвездиями), либо если вас не смущают габариты и вес.
—
Параболическое. Зеркала в форме параболоида вращения практически идеально концентрируют попадающие в телескоп лучи в нужной точке оптическо
...й системы. Благодаря этому рефлекторы с такими оснащением дают очень четкое изображение даже при высокой кратности увеличения и независимо от фокусного расстояния. Главный недостаток этого типа зеркал — довольно высокая стоимость, связанная со сложностью в производстве. Так что обращать внимание на параболические рефлекторы имеет смысл прежде всего тогда, когда описанные преимущества однозначно перевешивают; характерный пример — поиск сравнительно компактного телескопа для наблюдения за объектами дальнего космоса.Установка фотокамеры
Возможность
установки фотокамеры позволяет использовать телескоп для астрофотографии, не внося в конструкцию дополнительных изменений.
Для крепления камеры в телескопах обычно предусматривается стандартное резьбовое соединение «T-mount» (точнее, «T2 mount»: оригинальное крепление типа «Т» имеет меньшие размеры, однако в наше время почти не встречается). Такое соединение позволяет устанавливать не только специализированные «астрономические» камеры, но и обычные фотоаппараты со сменной оптикой (зеркальные и «беззеркальные»). Правда, для современной цифровой камеры понадобится переходник, поскольку изначально такие модели в большинстве своем используют другие виды креплений объектива; однако найти такой переходник обычно не составляет проблем. А некоторые устаревшие аппараты (в основном пленочные) изначально используют T2-mount и могут устанавливаться напрямую, без адаптера.
Напомним также, что астрофотография нередко предполагает длинные выдержки, и для таких условий оптимальным вариантом будет экваториальная система монтировки (см. «Монтировка»).
Общий вес
Общий вес телескопа в сборе — с учетом монтировки и штатива.
Небольшой вес удобен прежде всего для «походного» применения и частых перемещений с места на место. Однако обратной стороной этого являются скромные характеристики, высокая стоимость, а иногда — и то, и другое. Кроме того, более легкая подставка хуже сглаживает сотрясения и вибрации, что может быть актуально в некоторых ситуациях (например, если место наблюдения находится недалеко от железной дороги, где часто проходят товарные поезда).