Тип монтировки
Тип монтировки, которой оснащен телескоп.
Монтировка — это механический узел, с помощью которого телескоп крепится к штативу или ( в отдельных случаях) устанавливается прямо на землю. Помимо крепления, этот узел отвечает также за наведение оптики в определенную точку неба. Наибольшей популярностью в наше время пользуются
азимутальные приспособления в разных вариациях —
AZ1,
AZ2,
AZ3, а также в виде так называемой
монтировки Добсона.
Экваториальные механизмы разных моделей (
EQ1,
EQ2,
EQ3,
EQ4,
EQ5) заметно сложнее и дороже, зато и возможностей дают больше. Встречаются системы, сочетающие сразу оба этих типа монтировок — так называемые азимутально-экваториальные. И, наконец, отдельные телескопы и вовсе поставляются
без монтировки. Вот более подробное описание этих вариантов:
— Азимутальная. Полное название — «альт-азимутальная». Традиционно имеет две оси поворота телескопа — одну для наведения по высоте, вторую по азимуту. Разные модели таких монтировок различаются по дополнительным возможностям управления:
- AZ1. Не имеют системы точного движения.
...i>AZ2. Оснащены системой точного движения по вертикали (вокруг горизонтальной оси).
- AZ3. Оснащены системами точного движения по обеим осям.
В любом случае вторая ось (азимутальная) в таких системах всегда располагается вертикально, вне зависимости от географического положения телескопа; в этом и состоит ключевое отличие от описанных ниже экваториальных монтировок. В целом азимутальные механизмы достаточно просты и недороги сами по себе, при этом вполне удобны и практичны, благодаря чему именно данный вариант пользуется наибольшей популярностью в наше время. Кроме того, они идеально подходят для наблюдений за наземными объектами. Ключевым недостатком данного варианта является слабая пригодность к непрерывному «сопровождению» небесных тел (движущихся по небосводу вследствие вращения Земли). Если в правильно настроенном экваториальном механизме для этого нужно поворачивать телескоп всего по одной оси, то в азимутальном нужно задействовать обе оси, причем неравномерно. Ситуацию можно решить при помощи системы автослежения, но эта функция заметно влияет на цену всего прибора. И даже ее наличие не гарантирует, что телескоп подойдет для астрофотографии на длительных выдержках — ведь при таком использовании нужно обеспечивать не только точное движение по каждой отдельной оси, но еще поправку на поворот изображения в кадре (что предусматривается далеко не в каждой системе автослежения и еще более увеличивает цену).
— Добсона. Специфическая разновидность описанных выше азимутальных монтировок, применяемая почти исключительно в рефлекторах. Также предусматривает две оси вращения — горизонтальную и вертикальную. Ключевой особенностью монтировки Добсона является то, что она не рассчитана на штатив и устанавливается прямо на землю или другую ровную поверхность; для этого в конструкции предусматривается широкое массивное основание. Подобные системы отлично подходят для телескопов Ньютона, у которых окуляр располагается в передней части: благодаря низкому расположению тубуса на монтировке сам окуляр оказывается на достаточно удобной высоте. Также к преимуществам «добсонов» можно отнести простоту, невысокую стоимость и в то же время хорошую надежность, делающую их пригодными даже для крупных и тяжелых телескопов. Из недостатков нужно отметить слабую совместимость с неровными поверхностями, особенно твердыми, вроде сплошной скалы (тогда как штативы, используемые с другими типами монтировок, этого недостатка лишены).
— Экваториальная. Монтировки этого типа позволяют синхронизировать движение телескопа с движением небесных тел по небосводу, возникающим из-за вращения Земли. Условную вертикальную ось, отвечающую за поворот телескопа из стороны в сторону, в таких механизмах называют осью прямого восхождения (R.A.), а горизонтальную (для наведения по условной вертикали) — осью склонений (Dec.). Перед использованием экваториальная монтировка настраивается так, чтобы ось прямого восхождения была направлена на «полюс мира», параллельно оси вращения Земли («оси мира»); конкретный наклон относительно вертикали зависит от географической широты места наблюдений. Такой формат работы заметно усложняет как конструкцию самой монтировки, так и процедуру ее установки. С другой стороны, экваториальные системы идеально подходят для длительного «сопровождения» астрономических объектов: чтобы компенсировать движение небесного тела из-за вращения Земли и удерживать цель в поле зрения, достаточно вращать телескоп вокруг оси R.A. вправо (по часовой стрелке), причем с четко определенной скоростью — 15° в час, независимо от положения объекта по вертикали. Это делает подобные конструкции идеальным вариантом для астрофотографии — в том числе объектов дальнего космоса, для которых требуются длительные выдержки. Фактически для этого даже не нужна полноценная система автослежения — достаточно сравнительно простого часового механизма, вращающего телескоп вокруг оси прямого восхождения. Обратной стороной этих преимуществ, помимо упомянутой сложности и высокой стоимости, является слабая пригодность для крупных тяжелых телескопов — с увеличением веса прибора вес подходящей экваториальной системы увеличивается еще быстрее.
Что касается разных моделей подобных монтировок, то они маркируются буквенно-цифровым индексом, от EQ1 до EQ5. В целом чем больше число в обозначении — тем крупнее и тяжелее сама конструкция (включая треногу, если она поставляется в комплекте), тем хуже она подходит для перемещения с места на место, однако тем лучше гасит вибрации и сотрясения. А вот ограничения по весу телескопа с моделью экваториальной монтировки напрямую не связаны.
— Азимутально-экваториальная. Механизмы, сочетающие в себе сразу два типа монтировок. Выглядит это так: на штатив установлена азимутальная система, а на ней — экваториальная, в которой уже крепится телескоп. Подобная конструкция позволяет использовать возможности обеих типов монтировки. Так, азимутальный механизм вполне подходит для наблюдений за крупными небесными телами ближнего космоса (Луна, планеты) и обширными участками неба (такими, как созвездия), при этом он не требует сложной предварительной настройки. А для астрофотосъемки или для рассматривания объектов дальнего космоса на больших увеличениях удобнее использовать экваториальную систему. Однако на практике подобная универсальность требуется крайне редко, притом что сочетание двух типов монтировок усложняет конструкцию, увеличивает ее стоимость и снижает надежность. Так что этот вариант можно встретить в единичных моделях телескопов.
— Без монтировки. Полное отсутствие монтировочной системы в комплекте не позволяет применять телескоп «из коробки». Тем не менее, оно бывает оптимальным вариантом в некоторых случаях. Первый — если пользователь хочет выбрать монтировку на свое усмотрение, не полагаясь на решение производителя, или даже собрать ее самостоятельно (так, довольно много астрономов изготавливают свои собственные системы Добсона). Второй характерный случай — если в хозяйстве уже есть монтировка (например, от старого телескопа, пришедшего в негодность), и переплачивать за вторую просто незачем. В любом случае при выборе подобной модели стоит обращать особое внимание на тип крепления, на который рассчитана труба — от него напрямую зависит совместимость с конкретной монтировкой.
Светосила
Светосила телескопа характеризует общее количество света, «захватываемое» системой и передаваемое в глаз наблюдателя. С точки зрения цифр светосила — это соотношение между диаметром объектива и фокусным расстоянием (см. выше): например, для системы с апертурой 100 мм и фокусным расстоянием 1000 мм светосила будет составлять 100/1000 = 1/10. Также этот показатель называют «относительным отверстием».
При выборе по светосиле необходимо в первую очередь учитывать, для каких целей планируется применять телескоп. Крупное относительное отверстие весьма удобно для астрофотографии, т.к. обеспечивает пропускание большого количества света и позволяет работать с меньшими выдержками. А вот для визуальных наблюдений высокая светосила не требуется — даже наоборот, более длиннофокусные (и, соответственно, менее светосильные) телескопы характеризуются меньшим уровнем аберраций и позволяют применять для наблюдения более удобные окуляры. Также отметим, что большая светосила требует применения крупных объективов, что соответствующим образом сказывается на габаритах, весе и цене телескопа.
Проницающая способность
Проницающая способность телескопа — это звёздная величина наиболее тусклых звёзд, которые через него можно увидеть при идеальных условиях наблюдения (в зените, при чистом воздухе). Этот показатель описывает способность телескопа видеть небольшие и слабо светящиеся астрономические объекты.
При оценке возможностей телескопа по данному показателю стоит учитывать, что чем ярче объект — тем меньше его звёздная величина: к примеру, для Сириуса, самой яркой звезды ночного неба, этот показатель составляет -1, а для намного более тусклой Полярной звезды — около 2. Наибольшая звёздная величина, видимая невооружённым глазом — порядка 6,5.
Таким образом, чем крупнее число в данной характеристике — тем лучше телескоп подходит для работы с тусклыми объектами. Самые скромные современные модели позволяют рассмотреть звёзды величиной приблизительно 10, а наиболее продвинутые из систем потребительского уровня способны обеспечить видимость при показателях более 15 — это почти в 4000 раз тусклее, чем минимум для невооружённого глаза.
Отметим, что фактическая проницающая способность напрямую связана с кратностью увеличения. Считается, что своего максимума по данному показателю телескопы достигают при применении окуляров, обеспечивающих кратность порядка 0,7D (где D — диаметр объектива в миллиметрах).
Разрешающая способность (Dawes)
Разрешающая способность телескопа, определённая согласно критерию Дауэса (Dawes). Также этот показатель называют «предел Дауэса». (Встречается также прочтение «Дейвса», но оно не является верным).
Разрешающая способность в данном случае — это показатель, характеризующий способность телескопа различить отдельные источники света, расположенные на близком расстоянии, иными словами — способность увидеть их именно как отдельные объекты. Измеряется этот показатель в угловых секундах (1'' — это 1/3600 часть градуса). На расстояниях, меньших, чем разрешающая способность, эти источники (например, двойные звёзды) будут сливаться в сплошное пятно. Таким образом, чем ниже цифры в данном пункте — тем выше разрешающая способность, тем лучше телескоп подходит для разглядывания близко расположенных объектов. Однако стоит учитывать, что в данном случае речь идёт не о возможности видеть полностью отдельные друг от друга объекты, а лишь о возможности опознать в вытянутом световом пятне два источника света, слившиеся (для наблюдателя) в один. Для того, чтобы наблюдатель мог видеть два отдельных источника, расстояние между ними должно быть приблизительно вдвое больше заявленной разрешающей способности.
Согласно критерию Дауэса разрешающая способность напрямую зависит от диаметра объектива телескопа (см. выше): чем крупнее апертура, тем меньше может быть угол между отдельно видимыми объектами и тем выше разрешающая способность. По общему принципу этот показатель аналогичен...критерию Рэлея (см. «Разрешающая способность (Rayleigh)»), однако он был выведен экспериментальным путём, а не теоретически. Поэтому, с одной стороны, предел Дауэса точнее описывает практические возможности телескопа, с другой — соответствие этим возможностям во многом зависит субъективных особенностей наблюдателя. Проще говоря, человек без опыта наблюдений за двойными объектами, или имеющий проблемы со зрением, может попросту «не узнать» в вытянутом пятне два источника света, если они будут располагаться на расстоянии, сравнимом с пределом Дауэса. Дополнительно о разнице между критериями см. «Разрешающая способность (Rayleigh)».
Окуляры
В данном пункте указываются окуляры, входящие в штатный комплект поставки телескопа, точнее — фокусные расстояния этих окуляров.
Имея эти данные и зная фокусное расстояние телескопа (см. выше), можно определить степени увеличения, которые устройство может выдавать в комплектации «из коробки». Для телескопа без линз Барлоу (см. ниже) и других дополнительных элементов подобного назначения кратность будет равна фокусному расстоянию объектива, поделенному на фокусное расстояние окуляра. Например, оптика на 1000 мм, укомплектованная «глазками» на 5 и 10 мм, будет способна выдать увеличения 1000/5=200х и 1000/10=100х.
При отсутствии подходящего окуляра в комплекте его, как правило, можно докупить отдельно.
Солнечный фильтр
Наличие
солнечного фильтра в комплекте поставки телескопа.
Назначение этого аксессуара отражено уже в названии: он предназначен для безопасных наблюдений за Солнцем. Смотреть на «наше родное светило» через незащищенный телескоп категорически запрещено: даже кратковременный взгляд в окуляр может привести к необратимому повреждению глаза, к тому же сама оптика быстро перегревается и может выйти из строя. В свете этого и используются специальные фильтры, пропускающие очень немного света — сотые или даже тысячные доли процента; в случае Солнца этого вполне достаточно для нормальной видимости, при этом наблюдение становится вполне безопасным.
Большинство современных телескопов комплектуются фильтрами, надеваемыми на объектив — они защищают и глаз от ожога, и сам прибор от перегрева. Встречаются также окулярные фильтры — они компактнее и дешевле, однако они не дают защиты для оптики и сами склонны к быстрому перегреву и выходу из строя. Конкретный тип аксессуара стоит уточнять по документации производителя, а иногда это можно сделать даже по фотографиям товара.
Адаптер для смартфона
Приспособление, позволяющее устанавливать на телескоп смартфон таким образом, чтобы камера аппарата «видела» изображение в окуляре.
Адаптер для смартфона проводить фото- и видеосъёмку на смартфон, а также использовать его экран в качестве окуляра — например, если изображение хочется показать сразу нескольким людям.
Крепление трубы
Способ крепления трубы к монтировке, предусмотренный в телескопе.
В наше время используется три основных таких способа:
кольца,
винты,
пластина. Вот более подробное описание каждого из них:
— Крепежные кольца. Пара колец с винтовыми зажимами, установленных на монтировке. Внутренний диаметр колец приблизительно соответствует толщине трубы, а затягивание винтов обеспечивает плотную фиксацию. При этом тубус телескопа, как правило, не имеет каких-либо специальных упоров и удерживается в кольцах исключительно за счет силы трения. На практике это позволяет, ослабив винты, сдвинуть трубу вперед или назад, подобрав оптимальное положение под ту или иную ситуацию. Однако здесь стоит быть осторожным: слишком большое смещение крепления от середины, особенно в рефракторах с большой длиной трубы, может нарушить равновесие всей конструкции.
Как бы то ни было, кольца достаточно просты и в то же время удобны и практичны, а совместимость с ними ограничивается исключительно диаметром тубуса. В свете этого именно данный тип крепления наиболее популярен в наше время. Его недостатками можно назвать необходимость самостоятельно подбирать достаточно стабильное положение телескопа, а также следить за надежной затяжкой винтов — их ослабление может привести к проскальзыванию тубуса и даже его выпадению из колец.
— Крепежная пластина. Фактически речь идет о креплени
...и типа «ласточкин хвост». На корпусе телескопа для этого предусматривается специальная рейка, а на монтировке — платформа с пазом. При установке трубы на монтировку рейка задвигается в паз с торца и фиксируется специальным приспособлением вроде защелки или винта.
Одним из ключевых преимуществ крепежных пластин являются простота и скорость монтажа и демонтажа телескопа. Так, открутить и закрутить единственный винт фиксатора проще, чем возиться с винтовым креплением или затяжками на кольцах — тем более что во многих моделях этот винт можно крутить руками, без специального инструмента. А уж о защелках и говорить не приходится. Недостатком данного варианта можно назвать требовательность к качеству материалов и точности изготовления — иначе может появиться люфт, способный заметно «испортить жизнь» астроному. Кроме того, подобное крепление имеет очень ограниченные возможности по перемещению телескопа вперед-назад на монтировке, а то и вовсе не имеет их; а планки и пазы могут различаться по форме и размерам, что несколько затрудняет подбор сторонних монтировок.
— Крепежные винты. Монтировки с таким креплением имеют посадочное место в виде буквы Y, между «рогами» которой и устанавливается телескоп. При этом он с обеих сторон прикрепляется к рогам винтами, которые вкручиваются прямо в тубус; винтов предусматривается минимум по два с каждой стороны, чтобы труба не могла самостоятельно повернуться вокруг точки крепления.
В целом этот вариант фиксации отличается высокой надежностью и удобством в процессе использования телескопа. Винты плотно, без люфтов, держат тубус; при их ослаблении может разве что появиться тот самый люфт, но и только; кроме того, телескоп удержится на монтировке и не упадет, если хоть один винт остается хотя бы частично закрученным. Кроме того, место фиксации обычно размещается в районе центра тяжести, что по умолчанию обеспечивает оптимальный баланс и избавляет пользователя от необходимости самостоятельно подыскивать точку крепления. С другой стороны, установка и снятие трубы в таких монтировках требует больше времени и хлопот, чем в описанных выше системах; а расположение отверстий под винты и крепежная резьба в разных моделях, как правило, разные, и конструкции этого типа обычно не являются взаимозаменяемыми.Общий вес
Общий вес телескопа в сборе — с учетом монтировки и штатива.
Небольшой вес удобен прежде всего для «походного» применения и частых перемещений с места на место. Однако обратной стороной этого являются скромные характеристики, высокая стоимость, а иногда — и то, и другое. Кроме того, более легкая подставка хуже сглаживает сотрясения и вибрации, что может быть актуально в некоторых ситуациях (например, если место наблюдения находится недалеко от железной дороги, где часто проходят товарные поезда).