Форм-фактор
—
Настольный. Устройства, предназначенные для размещения на ровной поверхности вроде столешницы или полки; некоторые модели допускают также подвешивание на стену. Значительно проще в установке, чем оборудование, размещаемое на стойке или DIN-рейке (см. ниже), однако большинство настольных коммутаторов относится к начальному, максимум — среднему уровню. Это связано с тем, что настольное размещение менее надежно, чем крепление в стойку или на рейку, из-за чего оно считается менее подходящим для профессиональной аппаратуры.
—
Монтируемый в стойку. Коммутаторы, рассчитанные на монтаж в телекоммуникационную стойку. Для этого в конструкции предусматривается соответствующий набор креплений, а корпус выполняется в стандартном размере. Этот размер довольно крупный, что позволяет предусмотреть большое количество сетевых портов; а сам монтаж в стойку отличается надежностью. Поэтому именно данный вариант использует большинство коммутаторов профессионального уровня, хотя встречаются и сравнительно простые модели с таким способом установки.
—
Монтируемый на DIN-рейку. Коммутаторы, устанавливаемые на стандартную рейку формата DIN. Подобные рейки используются как монтажные приспособления, в частности, на электрощитках и в шкафах под специальное оборудование, однако при желании они могут быть закреплены на любой вертикальной поверхности, включая обычную стену. Конкретно же
...«свичи» с подобным монтажом, как и монтируемые в стойку, относятся в основном к профессиональному уровню; однако модели с установкой на рейку имеют значительно меньшие размеры, как следствие — более скромный функционал и меньшее число портов. Также отметим, что они обычно выполняются в вертикальной, а не горизонтальной компоновке.
— Уличный (на мачту). Коммутаторы, допускающие установку вне помещения. Характерной особенностью такого оборудования является усиленная защита корпуса, предохраняющая внутренние компоненты от пыли, влаги, высоких и низких температур и т. п.Пропускная способность
Пропускная способность коммутатора — максимальный объем трафика, который он способен обслужить. Указывается в гигабитах в секунду.
Данный параметр напрямую зависит от количества сетевых портов в устройстве (не считая Uplink). Собственно, даже если пропускная способность не приведена в характеристиках — еще можно вычислить по такой формуле: число портов, умноженное на пропускную способность отдельного порта и умноженное на два (так как учитывается и входящий, и исходящий трафик). К примеру, модель на 8 разъемов Gigabit Ethernet и 2 порта SFP будет иметь пропускную способность в (8*1 + 2*1)*2 = 20 Гбит/с.
Выбор по данному показателю достаточно очевиден: нужно оценить предполагаемые объемы трафика в обслуживаемом сегменте сети и убедиться, что пропускная способность коммутатора будет перекрывать ее с запасом хотя бы в 10 – 15 % (это даст дополнительную гарантию на случай нештатных ситуаций). При этом, если планируется часто работать на высоких, близких к максимальным, нагрузках — не помешает уточнить еще такую характеристику, как внутренняя пропускная способность коммутатора. Она обычно приводится в подробном техническом описании, и если это значение меньше общей пропускной способности — при значительных нагрузках могут возникнуть серьезные проблемы в работе.
Gigabit Ethernet
Количество стандартных сетевых разъемов RJ-45 формата Gigabit Ethernet, предусмотренное в конструкции коммутатора.
В соответствии с названием, такие разъемы обеспечивают скорость передачи данных до 1 Гбит/с. Изначально Gigabit Ethernet считался профессиональным стандартом, да и сейчас реальные потребности в таких скоростях возникают в основном при выполнении специальных задач. Тем не менее, гигабитными сетевыми адаптерами в наше время оснащаются даже относительно недорогие компьютеры, не говоря уже о более продвинутой технике.
Что касается количества разъемов, то оно соответствует числу сетевых устройств, которое можно подключить к «свичу» напрямую, без использования дополнительного оборудования. В случае Gigabit Ethernet число разъемов до 10 включительно считается сравнительно небольшим, от 10 до 25 — средним, а наличие более чем 25 портов этого типа характерно для моделей профессионального уровня. В то же время стоит отметить, что в некоторых «свичах» отдельные разъемы этого типа совмещаются с оптическими SFP или SFP+ (см. ниже). Такие разъемы имеют маркировку «combo» и учитываются как при подсчете RJ-45, так и при подсчете SFP/SFP+.
SFP (оптика)
Количество оптических сетевых портов стандарта SFP, предусмотренное в конструкции коммутатора. Подчеркнем, что речь идет об «обычных» SFP; данные по SFP+, как правило, указываются отдельно.
Конкретно в свичах под маркировкой «SFP» обычно подразумевается разъем под оптоволокно со скоростью подключения в 1 Гбит/с. Формально это не так много по сравнению со скоростями RJ-45; однако данный формат подключения имеет ряд преимуществ. Одним из главных является бОльшая эффективная дальность: упомянутый гигабитный стандарт, применяемый в коммутаторах, работает с кабелем длиной до 550 м, причем по меркам оптоволокна это еще очень немного. Правда, сам кабель чувствителен к перегибам и требует достаточно деликатного обращения; с другой стороны, он абсолютно невосприимчив к электромагнитым помехам. С другой стороны, в целом формат SFP заметно менее популярен в сетевом оборудовании, нежели RJ-45; поэтому и портов такого типа даже в продвинутых устройствах предусматривается немного. Так, наибольшее распространение получили решения на
2 разъема или
4 разъема SFP, хотя встречается и большее количество — 6, 8, а то и 10 и более. Также стоит учитывать, что в коммутаторах могут использоваться так называемые combo-разъемы, сочетающие в себе SFP и RJ-45; наличие таких портов уточняется в примечаниях, они учитываются как при подсчете RJ-45, так и при подсчете SFP.
Уточним, что входы Uplink также нередко использую
...т данный тип разъема; однако их количество указывается отдельно (см. ниже).Uplink
Количество разъемов Uplink, предусмотренное в конструкции коммутатора.
«Uplink» в данном случае — это не тип, а специализация разъема: так называют сетевой интерфейс, через который коммутатор (и подключенные к нему сетевые устройства) связываются с внешними сетями (включая Интернет) или сегментами сети. Иными словами, это своего рода «ворота», через которые весь трафик из сегмента сети, обслуживаемого коммутатором, передается дальше. Uplink, в частности, может использоваться для подключения к аналогичному «свичу» (для горизонтального расширения сети) или к устройству более высокого уровня (вроде коммутатора ядра).
Соответственно, число разъемов Uplink — это максимальное число внешних подключений, которое может обеспечить коммутатор без использования дополнительного оборудования. Конкретный же тип такого разъема может быть разным, однако это обычно одна из разновидностей LAN или SFP; подробнее см. «Тип Uplink».
Тип Uplink
Тип разъема (разъемов), используемого в коммутаторе в качестве интерфейса Uplink.
Подробнее о таком интерфейсе см. выше; здесь же отметим, что в качестве Uplink обычно используются такие же сетевые порты, как и для подключения к коммутатору отдельных устройств. Вот основные варианты таких разъемов:
— Fast Ethernet — сетевой разъем LAN (под «витую пару») с поддержкой скоростей до 100 Мбит/с. Такая скорость считается невысокой по современным меркам, тогда как порт Uplink выдвигает повышенные требования к пропускной способности — ведь через него идет трафик от всех устройств, обслуживаемых коммутатором. Поэтому в такой роли порты Fast Ethernet используются в основном в недорогих и устаревших моделях.
— Gigabit Ethernet — разъем LAN с поддержкой скоростей до 1 Гбит/с. Такой скорости нередко бывает достаточно даже для довольно обширной сети, при этом сами разъемы обходятся сравнительно недорого.
— 2.5 Gigabit Ethernet — разъем LAN с поддержкой скоростей до 2.5 Гбит/с.
— 10Gigabit Ethernet — разъем LAN с поддержкой скоростей до 10 Гбит/с. Такие возможности позволяют комфортно работать даже с очень большими объемами трафика, однако заметно влияют на цену коммутатора. Поэтому данный вариант встречается редко, в основном в высококлассных моделях.
— SFP. Разъем под оптоволоконный кабель, поддерживающий скорость порядка 1 Гбит/с. При этом перед Gigabit Ethernet, имеющим аналогичную пропускную способность, такой разъем име...ет одно заметное преимущество — бОльшую дальность подключения (обычно до 550 м).
— SFP+. Развитие описанного выше стандарта SFP. В коммутаторах обычно предусматривает скорость подключения в 10 Гбит/с; как и оригинальный стандарт, заметно превосходит по эффективной дальности подключение Ethernet. С другой стороны, реальная необходимость в таких скоростях возникает не так часто, а обходится SFP+ довольно дорого. Поэтому наличие таких разъемов Uplink характерно в основном для высококлассных моделей с большим количеством портов.
— SFP28. Очередное развитие SFP с повышеной пропускной способностью до 25 Гбит/с.
— QSFP / QSFP+. Наиболее скоростные SFP вплоть до 40 Гбит/с.
Отметим также, что описанные выше разъемы (кроме разве что Fast Ethernet) редко применяются как единственный тип входа Uplink. Заметно большее распространение получили сочетания электрических и оптоволоконных портов — SFP/Gigabit Ethernet и SFP+/10Gigabit Ethernet. Это обеспечивает универсальность в подключении, позволяя использовать наиболее удобный в той или иной ситуации тип кабеля; а при необходимости, разумеется, можно задействовать сразу все входы Uplink. Однако стоит учесть, что в отдельных моделях интерфейсы Ethernet и SFP могут сочетаться в одном физическом разъеме. Так что перед покупкой этот нюанс не помешает уточнить отдельно.
Существуют также коммутаторы, использующие сочетание двух типов SFP — SFP/SFP+; однако таких моделей мало и относятся они в основном к профессиональному уровню.
PoE (вход)
Стандарт входа PoE, предусмотренного в коммутаторе.
Сама по себе технология PoE (Power over Ethernet) дает возможность передавать по сетевому Ethernet-кабелю не только данные, но и энергию для питания сетевых устройств. А
наличие входа PoE позволяет самому коммутатору получать питание подобных способом. Как правило, функцию такого входа выполняет вход Uplink (или один/несколько из таких входов, если их больше одного); соответственно, источником питания при использовании PoE обычно является сетевое оборудование более высокого уровня. Также отметим, что существуют специальные устройства — так называемые PoE-инжекторы — позволяющие добавить в обычный сетевой сигнал еще и питание (то есть дополнить поддержкой PoE оборудование, изначально не имеющее такой функции).
Что касается стандартов PoE, то они определяют как мощность питания, так и основные возможности по согласованию источника питания с потребителем — тот и другой должны поддерживать один стандарт, иначе нормальная работа будет невозможной. При этом форматы, имеющие маркировку вида «802.3*», называют активными; их общей особенностью является то, что при подключении нагрузки источник питания сначала «опрашивает» ее, проверяя, соответствует ли питаемое устройство требованиям соответствующего стандарта, и если да — то какую именно мощность нужно на него подавать. В пассивном стандарте такой функции нет. А вот более подробное описание конкретных вариантов:
— 802
....3at. Стандарт, изначально выпущенный еще в 2009 году и известный как PoE+, или PoE тип 2. Стандартная мощность питания, получаемого на такой вход — 25,5 Вт, с напряжением от 42,5 до 57 В и током в паре до 600 мА.
— 802.3af/at. Данная маркировка означает, что вход PoE поддерживает как описанный выше стандарт 802.3at, так и более ранний 802.3af (PoE тип 1). Второй формат заметно скромнее по возможностям: он предусматривает мощность на входе питания до 13 Вт, входное напряжение 37 – 57 В и ток в паре питающих проводов до 350 мА. Несмотря на «почтенный возраст», многие устройства с выходами питаниях 802.3af все еще продолжают использоваться в наше время; так что и для входа питания коммутатора совместимость с этим стандартом может оказаться нелишним. Отметим только, что 802.3af охватывает целых четыре так называемых класса мощности (с 0 по 3), различающихся по конкретному числу ватт на выходе и входе. Так что при подключении питания от устройства с этим стандартом PoE не помешает дополнительно уточнить совместимость по классам мощности.
— Пассивный. Максимально простой и недорогой стандарт, созданный в расчете на применение преимущественно в оборудовании начального уровня (так как реализация активных стандартов PoE в целом обходится недешево). Как уже упоминалось выше, ключевым отличием от описанных выше форматов является то, что источник питания подает энергию «как есть» — со строго фиксированным напряжением и мощностью, не проверяя характеристик нагрузки и не подстраиваясь под нее. Именно это обеспечивает невысокую цену и доступность. С другой стороны, при использовании пассивного входа PoE надо уделять максимальное внимание тому, чтобы напряжение и мощность источника питания соответствовали характеристикам коммутатора; а подобное согласование бывает достаточно непростым делом в свете того, что пассивный стандарт не имеет строго определенных стандартов даже по напряжению, не говоря уже о мощности. При этом нестыковка приводит к тому, что в лучшем случае (если напряжение/мощность на выходе ниже требуемых для нагрузки) питание просто не заработает, а в худшем (при избытке напряжения/мощности) велика вероятность перегрузок, перегрева и даже поломок с возгораниями — причем такие неприятности могут произойти не сразу, а через довольно значительное время. Так что обращать внимание на данный вариант стоит прежде всего в тех случаях, когда простота и доступность более важны, чем продвинутые стандарты питания. При этом отметим, что некоторые свичи, имеющие в дополнение к пассивному входу также пассивный выход PoE, допускают соединение «каскадом» — в виде последовательной цепочки из нескольких устройств, питаемых от одного внешнего источника (главное, чтобы у этого источника хватало мощности).
Отдельно подчеркнем, что не стоит пытаться подключить активный источник питания к пассивному входу, и тем более наоборот. В первом случае коммутатор просто не пройдет проверку, которая проводится перед подачей энергии, и питание не включится. А во втором случае возможны серьезные сбои и даже аварии: пассивный источник питания подает энергию сразу, не проверяя характеристик питаемого устройства, что создает риск перегрузок при несоответствии рабочих параметров.Выходов с поддержкой PoE
Количество выходов с поддержкой PoE (см. выше), предусмотренное в конструкции коммутатора.
В теории это число соответствует максимальному количеству сетевых устройств, которые можно запитать через PoE. Однако на практике стоит учитывать еще два момента. Первый, и главный — это общая мощность, выдаваемая такими портами; чаще всего она указывается в пункте «Суммарная мощность PoE», а для моделей с одним выходом — в пункте «Мощность на выход PoE». В любом случае если энергопотребление подключенного оборудования будет выше этого значения — в лучшем случае питание от свича просто «не стартует», а в худшем возможны перегрузки и поломки оборудования.
Второй нюанс касается коммутаторов, которые сами могут питаться с использованием Power over Ethernet. Напомним, мощность такого питания сильно ограничена, так что когда оно используется — большая часть мощности обычно идет на работу самого свича, и энергии для подачи на выходы PoE в запасе остается немного (если вообще остается). Так что при питании коммутатора через PoE его собственные PoE-выходы в лучшем случае сильно «проседают» по возможностям (снижается максимальная мощность, уменьшается число одновременно питаемых устройств), а в худшем — и вовсе превращаются в обычные сетевые порты, без дополнительного питания. Так что если вы планируете полноценно использовать выходы PoE — стоит озаботиться подключением самого свича к сети; это особенно актуально для моделей, где таких выходов предусмотрено более одного.
Мощность на выход PoE
Максимальная мощность, которую коммутатор способен выдать на один выход PoE.
Такие выходы подробно описаны выше; лишь вкратце напомним, что они представляют собой сетевые порты Ethernet, дополненные возможностью питания подключенного оборудования прямо по LAN-кабелю, без дополнительных проводов. Что касается мощности такого питания, то она должна соответствовать характеристикам подключенного оборудования; однако термин «соответствовать» может иметь разное значение, в зависимости от используемого стандарта PoE (см. «PoE (выход)»).
Так, если коммутатор и оборудование работают по одному из активных стандартов (802.3af, 802.3at, 802.3bt) — мощность на выходе свича должна быть не ниже, чем потребляемая мощность подключенного оборудования. При этом превышение выходной мощности не страшно — описанные стандарты предусматривают автоматическую регулировку, которая позволяет питаемому устройству получать ровно столько энергии, сколько нужно, без перегрузок. А вот если выход недостаточно мощен — очевидно, что он попросту не сможет обеспечить эффективную работу.
В свою очередь, при использовании пассивного PoE выходная мощность источника питания в идеале должна максимально точно соответствовать энергопотреблению нагрузки. Это связано с тем, что в подобных случаях выход питания выдает строго определенную мощность, практически без какого-либо согласования и подстройки. И если излишек в пару ватт большинство питаемых устройств способны перенести более-менее «...спокойно», то более значительное превышение чревато перегрузками, перегревом и выходом оборудования из строя.
В завершение стоит сказать, что при наличии нескольких портов PoE и их одновременном использовании доступная мощность питания на порт может быть заметно меньше, чем при работе PoE только в одном разъеме. Прояснить этот момент позволяет информация о суммарной мощности PoE (см. ниже) — эта мощность делится на все задействованные порты. К примеру, если свич имеет три выхода PoE, а мощность на 1 выход составляет 60 Вт — то суммарная мощность тоже может быть заявлена на уровне 60 Вт. Соответственно, при использовании PoE на всех трех выходах сразу мощность на каждом из них составит не более 60/3 = 20 Вт. Технически возможны и более продвинутые способы управления питанием — с «умным» распределением мощности в зависимости от потребностей конкретных устройств (условно говоря, 30 Вт, 20 Вт и 10 Вт для того же суммарного значения в 60 Вт); но для полной гарантии стоит исходить из того, что вся энергия делится поровну.