Макс. тепловая мощность
Наибольшая тепловая мощность, вырабатываемая тепловым насосом — то есть количество тепла, которое он способен «перекачать» снаружи в систему отопления и/или ГВС.
Тепловая мощность является важнейшей характеристикой теплового насоса — она напрямую определяет его эффективность и способность обеспечить необходимое количество тепла. Отметим, что данный показатель указывается для оптимальных условий работы — в частности, довольно высокой наружной температуры. На практике такие условия встречаются редко, поэтому фактическая мощность обычно заметно ниже максимальной; это нужно учитывать при выборе. Существуют специальные формулы для расчёта оптимального значения максимальной тепловой мощности в зависимости от конкретной ситуации.
Тепловая мощность (~ 0 °C)
Тепловая мощность — проще говоря, количество тепла — вырабатываемое тепловым насосом при температуре источника (воздуха или грунта — см. выше) около 0 °С. Этот показатель более нагляден и приближён к реальности, чем максимальная тепловая мощность (см. выше), поэтому часто он указывается в характеристиках как основной.
Необходимая тепловая мощность зависит от площади и некоторых особенностей помещения, от потребности в горячей воде и ряда других факторов; для её расчёта в специальных источниках можно найти соответствующие формулы.
Макс. мощность охлаждения
Максимальная тепловая мощность, выдаваемая насосом в режиме охлаждения.
При такой работе насос функционирует в обратном цикле — отводя излишек тепла из помещения в окружающую среду, то есть, по сути, играет роль кондиционера. Необходимая мощность охлаждения зависит от площади здания, особенностей его теплоизоляции и некоторых других факторов; способы её расчёта можно найти в специальных источниках. Здесь же отметим, что обычное отопительное оборудование (радиаторы, тёплые полы) для работы на охлаждение не подходит, для этого необходимо использовать специальное оборудование (например, фанкойлы).
Мощность потребления (нагрев)
Электрическая мощность, потребляемая тепловым насосом при работе только на перекачку тепла, без использования догревательного ТЭНа (при его наличии, см. ниже). Отношение тепловой мощности к потребляемой мощности определяет тепловой коэффициент СОР (см. ниже) и, соответственно, общую эффективность агрегата. Также от этого показателя зависит общее энергопотребление (и, соответственно, счета за электричество), а также некоторые требования по питанию и подключению — например, модели с питанием от 220 В и мощностью более чем 5 кВт не могут работать от розетки и требуют специального формата подключения к сети.
Мощность потребления (охлаждение)
Подробнее о мощности потребления смотрите пункт выше. Здесь же отметим, что в данном пункте указывается расход электроэнергии при работе в режиме охлаждения.
Источник питания
Тип электропитания, используемого тепловым насосом.
—
Однофазное (230 В). Подключение к бытовой сети на 230 В. Многие модели с подобным питанием способны работать от обычной розетки, что заметно облегчает подключение. Однако при высокой потребляемой мощности (3,5 кВт и выше) может потребоваться особый способ подключения к сети, розетка тут уже не подойдет.
—
Трехфазное (400 В). Питание от сетей 400 В подходит для тепловых насосов любой мощности, в т.ч. для моделей, оснащенных «прожорливыми» догревательными ТЭНами. Кроме того, приборы с таким питанием при постоянной работе фактически потребляют меньше энергии, чем аналогичные по мощности потребления однофазные. В свете этого данный вариант может предусматриваться даже в тепловых насосах невысокой мощности. Недостатком трехфазных сетей является слабая распространенность: если в производственном помещении с такой сетью, скорее всего, проблем не будет, то для частного дома может понадобиться прокладка отдельной линии, например от уличного столба или трансформатора.
Мин. рабочая t
Наименьшая температура среды (воздуха или грунта, см. «Источник»), при которой тепловой насос может безопасно и достаточно эффективно выполнять свои функции. Эффективность при минимальной температуре, разумеется, заметно снижается, однако устройство всё равно можно использовать в качестве источника тепла.
Данные о минимальной рабочей t позволяют оценить пригодность насоса для холодного времени года.
Макс. t теплоносителя
Наибольшая температура, до которой насос способен нагреть теплоноситель. Стоит отметить, что достигнуть таких показателей можно при довольно высокой температуре воздуха или грунта. А поскольку тепловые насосы используются в холодное время года, то и фактическая максимальная температура, как правило, оказывается меньше теоретически достижимой. Тем не менее, этот параметр вполне позволяет оценить возможности агрегата или его пригодность для тех или иных задач.
Компрессор
Компрессор является главным элементом, «сердцем» агрегата: именно он обеспечивает циркуляцию теплоносителя по контурам насоса и перенос тепла снаружи в помещение. Зная название компрессора, можно найти подробную информацию о нем и выяснить некоторые особенности теплового насоса в целом. Отметим, что название обычно указывают в том случае, если в устройстве используется высококлассный компрессор, часто — инверторный (касается моноблоков или моделей с внешним блоком в комплектации.).
— Инверторный. Наличие в тепловом насосе компрессора с инверторным управлением мощностью. Модели без инвертора имеют лишь два режима работы — полная мощность и «выкл.»; а заданная интенсивность обогрева/охлаждение обеспечивается за счет включения и отключения компрессора на определенные промежутки времени. В свою очередь, принцип инверторного управления заключается в плавном изменении мощности компрессора, что позволяет избегать постоянных включений и отключений. Такой формат работы дает целый рад преимуществ: минимальный износ, отсутствие скачков напряжения и лишней нагрузки на сеть, а также комфортный (невысокий и стабильный) уровень шума.