Назначение
Общее назначение микроскопа.
В наше время встречается 4 основных варианта назначения:
детские,
учебные,
лабораторные и
специализированные микроскопы. При этом разные варианты вполне могут сочетаться в одной модели — к примеру, наиболее простые и недорогие учебные микроскопы вполне могут позиционироваться также как детские, а лабораторные могут иметь особую специализацию. А вот подробное описание разных вариантов назначения:
— Детский. Наиболее простые и недорогие микроскопы, предназначенные прежде всего для детей, которые делают свои первые шаги в естественных науках (а также для других нетребовательных пользователей, которым не нужен особо продвинутый функционал). Соответственно, в подобных устройствах отсутствуют специальные функции вроде блокировки фокуса, освещения по Келлеру, видеовыходов (для цифровых и оптико-цифровых моделей), тринокуляра с возможностью подключения камеры, и т. п. Кроме того, корпус может выполняться в ярких цветах, а в качестве материала корпуса обычно используется пластик. Тем не менее, многие детские микроскопы оснащаются револьверными головками для быстрой перенастройки кратности, а общая кратность увеличения вполне может превышать 600х «из коробки» и 1000х в топовой комплектации.
— Учебный. Микроскопы, хорошо подходящие для применения в учебных целях; иногда такое назначение даже
...прямо указывается производителем. Конкретный функционал подобных моделей достаточно разнообразен, тип также может быть разными (как биологическим, так и стереоскопическим). В целом же устройства этой специализации занимают промежуточное положение между простыми и недорогими детскими микроскопами и продвинутым лабораторным оборудованием. При этом существует немало моделей, имеющих комбинированное назначение — «детский/учебный» или «учебный/лабораторный». Первая разновидность проста и недорога, в образовательных целях она подойдет в основном для школы; второй вариант, в свою очередь, может пригодиться даже на университетском факультете естественных наук.
— Лабораторный. Наиболее продвинутая разновидность современных микроскопов, рассчитанная на полноценные лабораторные исследования и другие серьезные задачи. Соответственно, подобные модели стоят недешево, однако дают качественное изображение и в целом имеют наиболее обширный функционал (хотя конкретный набор возможностей, разумеется, может быть разным). Среди возможностей, встречающихся в лабораторных микроскопах — подвижный столик, установка светофильтров, 2 типа освещения (нижнее и верхнее), освещение по Келлеру, пригодность для специальных методов микроскопии (флуоресцентная, фазоконтрастная) и т.п.
— Специализированный. Микроскопы специфической конструкции и назначения, так или иначе отличающиеся от более традиционных моделей. Эти отличия могут быть разными; соответственно, различается и конкретная специализация. Так, в последнее время довольно значительную популярность получили портативные модели для смартфонов: при помощи специальной прищепки такой прибор крепится прямо на напротив основной камеры, и роль окуляра выполняет экран гаджета. Другая популярная разновидность — компактные цифровые микроскопы без собственных экранов, подключаемые к ПК или ноутбукам по USB, а то и по к смартфонам по Wi-Fi (в том числе и через Интернет). Также сюда входит профессиональное оборудование с достаточно узкой специализацией: стереоскопы со специальными креплениями для зубного протезирования, для пайки микросхем и т. п.; микроскопы для металлургических исследований; устройства на штативе с выносной штангой, предназначенные для осмотра отдельных участков на обширных предметах; сравнительные микроскопы для баллистических и трассологических исследований в криминалистике; и др.Тип
—
Биологический. Под термином «биологические» подразумеваются микроскопы, рассчитанные на использование преимущественно в биологии и медицине — для изучения клеток, микроорганизмов и других подобных объектов особо малого размера. Одним из ключевых отличий данного типа микроскопов от стереоскопических является использование в объективе только одной линзы. Как результат, изображение получается плоским и оценить объём предметов при взгляде через такой прибор невозможно. С другой же стороны, биологические микроскопы могут обеспечивать довольно высокую кратность увеличения — до 2000х; а в тех сферах, где они применяются, объёмность зачастую не требуется.
В эту же категорию попадают специализированные микроскопы, обозначаемые в англоязычной среде термином «Compound». Их конёк — то же самое большое увеличение. Применяется подобное оборудование в металлографической сфере, фармацевтической промышленности, ювелирном деле и т.п.
—
Стереоскопический. Микроскопы, предназначенные для получения объемного изображения (обычно в верхнем, отраженном свете). Традиционная конструкция такого микроскопа предусматривает пару объективов, парные окуляры (бинокуляр), сравнительно невысокое увеличение, широкое поле зрения а также значительное рабочее расстояние (расстояние от объектива до рассматриваемого предмета). Подобные особенности позволяют пользователю наблюдать объемное изображение с хорошей глубиной резко
...сти, а также без особых препятствий орудовать в поле зрения различными инструментами и четко контролировать их движения. Это незаменимо для таких задач, как ремонт часов и других механизмов, пайка микросхем, создание миниатюр и т. п.
Отметим, что в данную категорию могут также относить приборы более простой конструкции, всего с одним окуляром и объективом. Подобный микроскоп считается стереоскопическим, если он имеет широкое поле зрения, невысокую кратность и большую глубину резкости; по качеству изображения он неизбежно будет уступать моделям с двумя объективами, однако все же обеспечит определенное впечатление объемности. Разумеется, такие «псевдо-стереоскопы» не подходят для серьезных задач вроде ювелирных или тех же часовых работ — большинство из них предназначены для детей и рассчитаны на то, чтобы юный исследователь мог в деталях рассмотреть камушек, цветок или другой предмет, не оформленный в виде препарата для биологического микроскопа.Кратность увеличения
Диапазон кратностей увеличения, обеспечиваемый прибором — от минимальной до максимальной.
Кратность микроскопа высчитывается по формуле «кратность окуляра умножить на кратность объектива». Например, 20х объектив с
10х окуляром дадут кратность 10*20 = 200х. Современные микроскопы могут оснащаться револьверными головками на несколько объективов, зум-объективами (см. ниже) и сменными окулярами — так что в большинстве моделей кратность можно регулировать. Это позволяет подстраивать устройство под разные ситуации: когда нужно рассмотреть мелкие детали, используется высокая степень увеличения, а вот для расширения поля зрения кратность нужно уменьшать.
Подробные рекомендации по оптимальным кратностям для разных задач можно найти в специальных источниках. Здесь же отметим, что многие производители идут на хитрость и указывают максимальное значение кратности по степени увеличения, достигаемой с дополнительной линзой Барлоу. Такая линза действительно может дать серьёзный прирост кратности, однако не факт, что изображение при этом получится качественным; подробнее см. «Комплектация».
Метод исследования
Методы исследования, применимые в данной модели микроскопа.
— Светлого поля. Наиболее известный и широко применяемый метод световой микроскопии. Рассматриваемый объект при таких исследованиях помещается на светлый фон, на котором он выглядит более темным. Отметим, что для исследования могут использоваться разные способы освещения: прямой сквозной, косой, отраженный. Первый вариант (когда свет от лампы или зеркала под предметным столиком просвечивает образец насквозь) оптимально подходит для исследования прозрачных образцов, ключевые детали которых темнее общего фона; характерные примеры — тонкие срезы животных и растительных тканей. Косой свет схож по специфике применения, при этом он дает серый фон и уступает прямому по эффективности подсветки, однако обеспечивает более рельефное изображение. Что касается отраженного света, то он в данном случае незаменим при рассматривании непрозрачных предметов: образцов руд и других материалов, полупроводниковых пластин и т. п. В любом случае светлопольная микроскопия хорошо выявляет прежде всего детали, которые заметно отличаются по светопропусканию или показателю преломления от окружающего фона (при сквозном освещении), либо дают заметные отсветы/тени (при отраженном).
— Темного поля. Своего рода противоположность светлопольному исследованию: рассматриваемый предмет или отдельные его элементы получаются более светлыми, чем окружающий фон. Однако это не просто «негатив» изображения, а именно отдельный метод со своим...и особенностями. Подсветка при темнопольной микроскопии обычно сквозная, а осуществляется она специфическим образом: середина луча света перекрывается блендой, а световой «цилиндр», проходя через линзу-конденсор, превращается в «песочные часы». При этом в самом узком месте таких «часов» находится препарат, а в сторону объектива световой конус расширяется так, что не попадает в оптику. Таким образом, пользователь видит в микроскоп только свет, рассеянный препаратом, и темный фон вокруг. Подобный способ исследования, помимо прочего позволяет выявлять «плавные» детали, которые не выделяются резко на окружающем фоне и не видны при светлопольном исследовании. Среди вариантов применения темнопольной микроскопии — работа с неокрашенными биологическими препаратами (клетки, образцы тканей, микроорганизмы), а также исследование некоторых прозрачных материалов на мелкие дефекты поверхности.
— Фазового контраста. Метод, применяемый для исследования прозрачных и бесцветных предметов с неоднородной структурой, применяемый тогда, когда эту неоднородность нельзя выявить более традиционной светлопольной микроскопией. Идея данного метода состоит в том, что при прохождении через структуры с разными показателями преломления свет получает разные изменения по фазе. Эти изменения не видны в обычную оптику, однако их вполне можно сделать видимыми при помощи специального оборудования — а именно конденсора и объектива особой конструкции. Соответственно, такое оборудование обязательно входит в комплект поставки микроскопа.
— Флуоресцентный. Этот метод предусматривает подсветку наблюдаемых объектов ультрафиолетом (поэтому также известен как ультрафиолетовая микроскопия). Под действием такого освещения которого эти объекты или их отдельные элементы начинаю светиться в видимом диапазоне, а фон остается темным. При необходимости в препарат вводятся окрашивающие вещества, улучшающие светимость (характерный пример — биологические объекты, большинство из которых сами по себе флуоресцируют довольно слабо). В окуляр микроскопа изображение попадает через фильтр, который отсеивает УФ-лучи, но свободно пропускает свечение препарата.
Одна из главных особенностей флуоресцентной микроскопии — высокое разрешение: она позволяет четко видеть даже очень мелкие предметы, которые недоступны взгляду в обычном видимом диапазоне. Фактически данный метод по разрешению находится между оптической и электронной микроскопией; при этом, в отличие от электронных и атомных микроскопов, приборы с поддержкой УФ-методики позволяют рассматривать даже «начинку» живых клеток и микроорганизмов. А некоторые специальные варианты этой методики позволяют добиться уже не микро-, а наноскопических увеличений. Второй популярный способ применения флуоресцентных исследований — выявление частиц, элементов, вкраплений и т. п., которые не видны под обычным светом, но хорошо выделяются в ультрафиолете. Характерный пример — поверхность многих металлов и сплавов.
Револьверная головка
Количество объективов в револьверной головке микроскопа.
Револьверная головка представляет собой круглую насадку с несколькими объективами разной кратности. Поворачивая такую насадку, можно менять используемый в данный момент объектив; а чем больше объективов — тем шире у пользователя выбор при подборе оптимальной кратности микроскопа. С другой стороны, большое количество оптики сказывается на габаритах и цене устройства. В свете этого большинство современных микроскопов имеют
3 –
4 объектива — это количество считается оптимальным по соотношению функционала и цены.
Окуляр
—
Монокуляр. Окуляр с одной линзой, в который можно смотреть только одним глазом. По очевидным причинам используется только в биологических микроскопах (см. «Тип»). Преимуществами монокуляров являются прежде всего меньшие размеры и стоимость, чем у других разновидностей; кроме того, они не требуют подстройки по межзрачковому расстоянию. С другой стороны, постоянно смотреть в окуляр одним глазом утомительно, поэтому данный вариант слабо подходит для ситуаций, когда в микроскоп приходится заглядывать часто и подолгу.
—
Бинокуляр. Сдвоенный окуляр, в который можно смотреть сразу обоими глазами. Отметим, что такая оптика применяется не только в стереомикроскопах, изначально предназначенных для рассматривания предмета через два объектива (см. «Тип»), но и в биологических микроскопах с одним объективом. Дело в том, что смотреть в оптический прибор двумя глазами значительно удобнее, чем одним, глаза при этом меньше нагружаются и усталость наступает не так быстро. Поэтому для серьёзных задач, связанных с частым использованием микроскопа, оптимальным вариантом являются бинокуляры (или тринокуляры, см. ниже). Обходится такая оптика дороже монокулярной, однако это компенсируется удобством использования.
—
Тринокуляр. Разновидность бинокуляра (см. соответствующий пункт), дополненная третьим оптическим каналом для специальной камеры-видеоокуляра. Такая камера, как пр
...авило, подключается к ПК или ноутбуку; установив её в гнездо для третьего окуляра, можно осуществлять фото- и видеосъёмку, а также выводить изображение в реальном времени на экран компьютера. Одновременно с этим можно смотреть в микроскоп и обычным способом. Устройства с тринокулярами весьма функциональны и универсальны, однако сложны и стоят недёшево.
— LCD-экран. Наличие у микроскопа LCD-экрана, заменяющего традиционный окуляр. К такому прибору не нужно всякий раз наклоняться для просмотра изображения, что бывает очень удобно, если наблюдения нужно совмещать с ведением записей и другими подобными занятиями. Микроскопы подобной конструкции обычно имеют функцию фото- и видеосъёмки, а также различные встроенные инструменты — например, масштабную сетку для оценки размеров видимых объектов, выводящуюся прямо на экран. Кроме того, изображение на экране может видеть не только непосредственный пользователь, но и все, кто находится рядом; такие возможности бывают незаменимы во время учебных занятий, консультаций, презентаций и т. п. С другой стороны, подобные микроскопы получаются громоздкими и дорогими.
— Кратность увеличения. Кратность увеличения, обеспечиваемая окуляром. Этот параметр, наряду с кратностью объектива, влияет на общую кратность увеличения прибора (см. выше). Классическим вариантом для окуляров в микроскопах считается 10х, однако встречаются и более высокие значения. В комплект поставки может входить несколько окуляров, разной кратности — для изменения общей степени увеличения. Встречается обозначение кратности с буквенным индексом, например, WF10x. Это означает, что окуляр имеет расширенное поле зрения (WF — широкое, EWF — экстра-широкое, UWF — сверхширокое).
— Наклон. Угол наклона окуляра указывается относительно горизонтали — и только в тех моделях, где окуляр не является вертикальным и не имеет регулировки по углу наклона (о том и другом см. ниже). Наиболее популярный вариант в подобных моделях — 45°, когда окуляр расположен, по сути, ровно посредине между строго вертикальным и строго горизонтальным положением. Такой наклон достаточно удобен в разных ситуациях — и если пользователь сидит за столом, и если он стоя наклоняется к стоящему на столе микроскопу. Не такой популярный, но все же весьма распространенный вариант — 30°, предполагающий более близкое к горизонтали положение окуляров; такая конструкция оптимально подходит для работы сидя, но вот наклоняться к подобному прибору уже не очень удобно. И наоборот, угол в 60° отлично подходит для работы стоя, но и только; поэтому данный вариант можно встретить очень редко, буквально в единичных моделях.
— Регулируемый наклон. Возможность изменять угол наклона окуляра позволяет подстраивать прибор под конкретные ситуации. Так, для работы сидя за столом лучше подходит небольшой наклон (близкий к горизонтали), а если нужно постоянно наклоняться к микроскопу — угол лучше увеличить, подняв окуляр ближе к вертикали. В то же время регулируемый наклон усложняет конструкцию прибора и увеличивает ее стоимость, притом что на практике реальная потребность в подобном функционале возникает не так часто. Также стоит сказать, что для упрощения конструкции в некоторых моделях наклонным делается весь установленный на основании прибор — включая объектив и предметный столик. Однако такие устройства имеют другой недостаток: наклон предметного столика прямо связан с наклоном окуляра, и если нужно разместить препарат строго горизонтально — то оптику неизбежно придется установить вертикально, без других вариантов. Поэтому регулируемый наклон (во всех вариантах) в наше время встречается достаточно редко.
— Без наклона. Еще более редкий и специфический вариант: окуляр и вся оптическая система в таких моделях расположены строго вертикально. В подобный микроскоп не очень удобно смотреть, даже стоя над рабочим столом, а для сидячего положения такие модели и вовсе практически непригодны. С другой стороны, у этой конструкции есть и свои преимущества. Прежде всего она получается более простой и надежной, чем в аналогах с наклонным окуляром — благодаря отсутствию дополнительных зеркал и призм; а предметный столик в таких устройствах всегда расположен строго горизонтально, что бывает немаловажно при работе с некоторыми препаратами.
— Посадочный диаметр. Номинальный диаметр окуляра, используемого в микроскопе, а также диаметр отверстия в тубусе, предназначенного для установки окуляра. В современных микроскопах используется несколько стандартных диаметров, в частности, 23 и 27 мм. На практике данный параметр необходим прежде всего в том случае, если планируется приобретать запасные или сменные окуляры к микроскопу, либо если «в хозяйстве» уже имеется окуляр, и нужно оценить его совместимость с данной моделью.
— Диоптрическая коррекция. Диапазон диоптрической коррекции, предусмотренный в окуляре. Такая коррекция применяется для того, чтобы близорукий или дальнозоркий человек мог смотреть в микроскоп без очков или контактных линз. В большинстве моделей с данной функцией диапазон коррекции составляет порядка 5 диоптрий в обе стороны; это позволяет использовать микроскоп при невысокой и средней степени близорукости/дальнозоркости.Межзрачковое расстояние
Межзрачковое расстояние в микроскопе, оснащенном окуляром «под два глаза» — бинокуляром или тринокуляром.
Фактически в данном пункте указывается расстояние между оптическими центрами окуляров. Для нормальной видимости оно должно точно соответствовать расстоянию между зрачками глаз пользователя — отсюда, помимо прочего, и название «межзрачковое». А поскольку у разных людей расстояние между зрачками может заметно различаться, то во всех современных микроскопах (для которых это вообще актуально) окуляры делаются подвижными, и ширину их расположения можно регулировать. В данном пункте, соответственно, указывается диапазон такой регулировки. Чаще всего он составляет от 55 до 75 мм — этого вполне хватает, чтобы подобрать вариант почти под любого взрослого пользователя. Но встречаются и более обширные диапазоны регулировки, в основном с расширением в меньшую сторону — например, 52 – 76 мм или 48 – 75 мм. Такие характеристики могут оказаться нелишними, в частности, если речь идет о детском микроскопе.
Максимальное рабочее расстояние
Наибольшее рабочее расстояние, обеспечиваемое микроскопом.
Рабочим расстоянием называют расстояние от объектива до рассматриваемого предмета. Этот параметр важен в первую очередь для стереомикроскопов (см. «Тип»): чем больше пространства остаётся под объективом, тем удобнее работать с различными инструментами и приспособлениями в поле зрения прибора. Однако тут стоит учитывать, что максимальное рабочее расстояние достигается на минимальной кратности увеличения, с ростом кратности объектив приходится приближать к рассматриваемому предмету. Для биологических же микроскопов рабочее расстояние не имеет особого значения: такие приборы работают в основном с плоскими препаратами, к которым объектив можно подводить практически вплотную.
Предметный столик
Тип и/или размер предметного столика, установленного в микроскопе. Напомним, предметный столик — это поверхность, на которой размещается исследуемый препарат.
— Стационарный. Предметный столик, закреплённый неподвижно; наведение на резкость в таких микроскопах осуществляется за счёт движения вверх-вниз тубуса с объективом и окуляром. Такие системы просты и недороги, однако наводить резкость, глядя в постоянно движущийся окуляр, не очень удобно. Кроме того, для продвинутых биологических микроскопов (см. «Тип») с бинокулярами и тринокулярами (см. «Окуляр») данный вариант слабо подходит ещё и по некоторым конструктивным причинам. А вот абсолютное большинство стереомикроскопов оснащается именно стационарными столиками — это наиболее разумная конструкция с учётом специфики применения.
—
Подвижный. В микроскопах этого типа вся оптическая система неподвижно закреплена на штативе, а предметный столик может перемещаться вверх-вниз для наведения оптики на резкость. Такая конструкция встречается исключительно в биологических микроскопах (см. «Тип»). Она несколько сложнее и дороже, чем при неподвижном столике, но в то же время значительно удобнее: при наведении на резкость окуляр не двигается, что позволяет с комфортом подстраивать изображение, не отрываясь от наблюдения. Кроме того, именно подвижный столик является наиболее подходящим для продвинутых приборов с бинокулярами и тринокулярами (см. «Окуляр»), практически все подобные
...микроскопы имеют подобное оснащение.
Что касается размеров предметного столика, то они могут варьироваться от 75х75 мм до 240х200 мм и даже более. Здесь при выборе стоит учитывать планируемые размеры исследуемых препаратов.