Казахстан
Каталог   /   Фототехника   /   Оптические приборы   /   Микроскопы

Сравнение Kaisi UM038 (10-500x) vs Levenhuk DTX 500 LCD

Добавить в сравнение
Kaisi UM038 (10-500x)
Levenhuk DTX 500 LCD
Kaisi UM038 (10-500x)Levenhuk DTX 500 LCD
Товар устарелСравнить цены 1
ТОП продавцы
Главное
AV-выход для подключения к телевизору или проектору. Поддержка карт памяти microSD до 32 ГБ (в комплект не входит).
Назначение
 
специализированный
лабораторный
 
Принцип работыцифровойцифровой
Кратность увеличения10 – 500 x20 – 500 x
Метод исследования
 
светового поля
Объектив и окуляр
Окуляр
LCD-экран
LCD-экран
Конструкция
Предметный столик
стационарный
подвижный
Фокусировкаручная
грубая /в пределах от 0 мм до 150 мм/
Подсветкасветодиодная (LED)светодиодная (LED)
Верхняя подсветка
Встроенная камера
Кол-во мегапикселей5 МП5 МП
Функции и возможности
регулировка яркости
запись фото / видео
регулировка яркости
запись фото / видео
Интерфейсы подключения
AV-выход
USB
картридер
AV-выход
USB
картридер
Общее
Источник питания
сеть 230 В
аккумулятор
сеть 230 В
аккумулятор
Материал корпусапластикпластик
Габариты230x150x110 мм227x104x149 мм
Вес
0.76 кг /с аккумулятором/
Дата добавления на E-Katalogоктябрь 2021сентябрь 2017

Назначение

Общее назначение микроскопа.

В наше время встречается 4 основных варианта назначения: детские, учебные, лабораторные и специализированные микроскопы. При этом разные варианты вполне могут сочетаться в одной модели — к примеру, наиболее простые и недорогие учебные микроскопы вполне могут позиционироваться также как детские, а лабораторные могут иметь особую специализацию. А вот подробное описание разных вариантов назначения:

— Детский. Наиболее простые и недорогие микроскопы, предназначенные прежде всего для детей, которые делают свои первые шаги в естественных науках (а также для других нетребовательных пользователей, которым не нужен особо продвинутый функционал). Соответственно, в подобных устройствах отсутствуют специальные функции вроде блокировки фокуса, освещения по Келлеру, видеовыходов (для цифровых и оптико-цифровых моделей), тринокуляра с возможностью подключения камеры, и т. п. Кроме того, корпус может выполняться в ярких цветах, а в качестве материала корпуса обычно используется пластик. Тем не менее, многие детские микроскопы оснащаются револьверными головками для быстрой перенастройки кратности, а общая кратность увеличения вполне может превышать 600х «из коробки» и 1000х в топовой комплектации.

— Учебный. Микроскопы, хорошо подходящие для применения в учебных целях; иногда такое назначение даже...прямо указывается производителем. Конкретный функционал подобных моделей достаточно разнообразен, тип также может быть разными (как биологическим, так и стереоскопическим). В целом же устройства этой специализации занимают промежуточное положение между простыми и недорогими детскими микроскопами и продвинутым лабораторным оборудованием. При этом существует немало моделей, имеющих комбинированное назначение — «детский/учебный» или «учебный/лабораторный». Первая разновидность проста и недорога, в образовательных целях она подойдет в основном для школы; второй вариант, в свою очередь, может пригодиться даже на университетском факультете естественных наук.

— Лабораторный. Наиболее продвинутая разновидность современных микроскопов, рассчитанная на полноценные лабораторные исследования и другие серьезные задачи. Соответственно, подобные модели стоят недешево, однако дают качественное изображение и в целом имеют наиболее обширный функционал (хотя конкретный набор возможностей, разумеется, может быть разным). Среди возможностей, встречающихся в лабораторных микроскопах — подвижный столик, установка светофильтров, 2 типа освещения (нижнее и верхнее), освещение по Келлеру, пригодность для специальных методов микроскопии (флуоресцентная, фазоконтрастная) и т.п.

— Специализированный. Микроскопы специфической конструкции и назначения, так или иначе отличающиеся от более традиционных моделей. Эти отличия могут быть разными; соответственно, различается и конкретная специализация. Так, в последнее время довольно значительную популярность получили портативные модели для смартфонов: при помощи специальной прищепки такой прибор крепится прямо на напротив основной камеры, и роль окуляра выполняет экран гаджета. Другая популярная разновидность — компактные цифровые микроскопы без собственных экранов, подключаемые к ПК или ноутбукам по USB, а то и по к смартфонам по Wi-Fi (в том числе и через Интернет). Также сюда входит профессиональное оборудование с достаточно узкой специализацией: стереоскопы со специальными креплениями для зубного протезирования, для пайки микросхем и т. п.; микроскопы для металлургических исследований; устройства на штативе с выносной штангой, предназначенные для осмотра отдельных участков на обширных предметах; сравнительные микроскопы для баллистических и трассологических исследований в криминалистике; и др.

Кратность увеличения

Диапазон кратностей увеличения, обеспечиваемый прибором — от минимальной до максимальной.

Кратность микроскопа высчитывается по формуле «кратность окуляра умножить на кратность объектива». Например, 20х объектив с 10х окуляром дадут кратность 10*20 = 200х. Современные микроскопы могут оснащаться револьверными головками на несколько объективов, зум-объективами (см. ниже) и сменными окулярами — так что в большинстве моделей кратность можно регулировать. Это позволяет подстраивать устройство под разные ситуации: когда нужно рассмотреть мелкие детали, используется высокая степень увеличения, а вот для расширения поля зрения кратность нужно уменьшать.

Подробные рекомендации по оптимальным кратностям для разных задач можно найти в специальных источниках. Здесь же отметим, что многие производители идут на хитрость и указывают максимальное значение кратности по степени увеличения, достигаемой с дополнительной линзой Барлоу. Такая линза действительно может дать серьёзный прирост кратности, однако не факт, что изображение при этом получится качественным; подробнее см. «Комплектация».

Метод исследования

Методы исследования, применимые в данной модели микроскопа.

— Светлого поля. Наиболее известный и широко применяемый метод световой микроскопии. Рассматриваемый объект при таких исследованиях помещается на светлый фон, на котором он выглядит более темным. Отметим, что для исследования могут использоваться разные способы освещения: прямой сквозной, косой, отраженный. Первый вариант (когда свет от лампы или зеркала под предметным столиком просвечивает образец насквозь) оптимально подходит для исследования прозрачных образцов, ключевые детали которых темнее общего фона; характерные примеры — тонкие срезы животных и растительных тканей. Косой свет схож по специфике применения, при этом он дает серый фон и уступает прямому по эффективности подсветки, однако обеспечивает более рельефное изображение. Что касается отраженного света, то он в данном случае незаменим при рассматривании непрозрачных предметов: образцов руд и других материалов, полупроводниковых пластин и т. п. В любом случае светлопольная микроскопия хорошо выявляет прежде всего детали, которые заметно отличаются по светопропусканию или показателю преломления от окружающего фона (при сквозном освещении), либо дают заметные отсветы/тени (при отраженном).

— Темного поля. Своего рода противоположность светлопольному исследованию: рассматриваемый предмет или отдельные его элементы получаются более светлыми, чем окружающий фон. Однако это не просто «негатив» изображения, а именно отдельный метод со своим...и особенностями. Подсветка при темнопольной микроскопии обычно сквозная, а осуществляется она специфическим образом: середина луча света перекрывается блендой, а световой «цилиндр», проходя через линзу-конденсор, превращается в «песочные часы». При этом в самом узком месте таких «часов» находится препарат, а в сторону объектива световой конус расширяется так, что не попадает в оптику. Таким образом, пользователь видит в микроскоп только свет, рассеянный препаратом, и темный фон вокруг. Подобный способ исследования, помимо прочего позволяет выявлять «плавные» детали, которые не выделяются резко на окружающем фоне и не видны при светлопольном исследовании. Среди вариантов применения темнопольной микроскопии — работа с неокрашенными биологическими препаратами (клетки, образцы тканей, микроорганизмы), а также исследование некоторых прозрачных материалов на мелкие дефекты поверхности.

— Фазового контраста. Метод, применяемый для исследования прозрачных и бесцветных предметов с неоднородной структурой, применяемый тогда, когда эту неоднородность нельзя выявить более традиционной светлопольной микроскопией. Идея данного метода состоит в том, что при прохождении через структуры с разными показателями преломления свет получает разные изменения по фазе. Эти изменения не видны в обычную оптику, однако их вполне можно сделать видимыми при помощи специального оборудования — а именно конденсора и объектива особой конструкции. Соответственно, такое оборудование обязательно входит в комплект поставки микроскопа.

— Флуоресцентный. Этот метод предусматривает подсветку наблюдаемых объектов ультрафиолетом (поэтому также известен как ультрафиолетовая микроскопия). Под действием такого освещения которого эти объекты или их отдельные элементы начинаю светиться в видимом диапазоне, а фон остается темным. При необходимости в препарат вводятся окрашивающие вещества, улучшающие светимость (характерный пример — биологические объекты, большинство из которых сами по себе флуоресцируют довольно слабо). В окуляр микроскопа изображение попадает через фильтр, который отсеивает УФ-лучи, но свободно пропускает свечение препарата.
Одна из главных особенностей флуоресцентной микроскопии — высокое разрешение: она позволяет четко видеть даже очень мелкие предметы, которые недоступны взгляду в обычном видимом диапазоне. Фактически данный метод по разрешению находится между оптической и электронной микроскопией; при этом, в отличие от электронных и атомных микроскопов, приборы с поддержкой УФ-методики позволяют рассматривать даже «начинку» живых клеток и микроорганизмов. А некоторые специальные варианты этой методики позволяют добиться уже не микро-, а наноскопических увеличений. Второй популярный способ применения флуоресцентных исследований — выявление частиц, элементов, вкраплений и т. п., которые не видны под обычным светом, но хорошо выделяются в ультрафиолете. Характерный пример — поверхность многих металлов и сплавов.

Предметный столик

Тип и/или размер предметного столика, установленного в микроскопе. Напомним, предметный столик — это поверхность, на которой размещается исследуемый препарат.

— Стационарный. Предметный столик, закреплённый неподвижно; наведение на резкость в таких микроскопах осуществляется за счёт движения вверх-вниз тубуса с объективом и окуляром. Такие системы просты и недороги, однако наводить резкость, глядя в постоянно движущийся окуляр, не очень удобно. Кроме того, для продвинутых биологических микроскопов (см. «Тип») с бинокулярами и тринокулярами (см. «Окуляр») данный вариант слабо подходит ещё и по некоторым конструктивным причинам. А вот абсолютное большинство стереомикроскопов оснащается именно стационарными столиками — это наиболее разумная конструкция с учётом специфики применения.

Подвижный. В микроскопах этого типа вся оптическая система неподвижно закреплена на штативе, а предметный столик может перемещаться вверх-вниз для наведения оптики на резкость. Такая конструкция встречается исключительно в биологических микроскопах (см. «Тип»). Она несколько сложнее и дороже, чем при неподвижном столике, но в то же время значительно удобнее: при наведении на резкость окуляр не двигается, что позволяет с комфортом подстраивать изображение, не отрываясь от наблюдения. Кроме того, именно подвижный столик является наиболее подходящим для продвинутых приборов с бинокулярами и тринокулярами (см. «Окуляр»), практически все подобные...микроскопы имеют подобное оснащение.

Что касается размеров предметного столика, то они могут варьироваться от 75х75 мм до 240х200 мм и даже более. Здесь при выборе стоит учитывать планируемые размеры исследуемых препаратов.

Фокусировка

Виды фокусировки (наведения на резкость), предусмотренные в микроскопе. Фокусировка осуществляется за счёт изменения расстояния между рассматриваемым предметом и объективом; виды её могут быть такими:

— Грубая. Данный способ означает наличие одного поворотного регулятора, отвечающего за перемещение объектива или предметного столика. Достоинства подобной конструкции — простота и невысокая стоимость. В то же время фокусировка на высоких кратностях в таких микроскопах является довольно непростой задачей: поворачивать ручку настройки приходится буквально по долям миллиметра.

Грубая / точная. Фокусировка, осуществляемая двумя механическими регуляторами — для предварительного наведения на резкость и для окончательной тонкой подстройки. Такая настройка сама по себе удобнее, чем только грубая (см. выше), а на высоких кратностях она бывает просто незаменимой. С другой стороны, наличие дополнительного регулятора усложняет и удорожает конструкцию, поэтому встречается данный вариант преимущественно в полупрофессиональных и профессиональных микроскопах.

— Ручная. Способ, предполагающий отсутствие механизма фокусировки как такового. Наведение на резкость в таких приборах осуществляется за счёт того, что пользователь вручную перемещает объектив — например, сдвигая его вверх-вниз на вертикальном штативе и фиксируя в нужном положении зажимом, или наклоняя вперёд-назад на поворотном креплении. Данный вариант подходит только д...ля моделей с невысокой кратностью, не требующих особой точности при фокусировке; он встречается преимущественно в цифровых микроскопах без собственного экрана (см. «Принцип работы»), а также портативных моделях (см. соответствующий пункт).
Levenhuk DTX 500 LCD часто сравнивают