Казахстан
Каталог   /   Компьютерная техника   /   Комплектующие   /   Системы охлаждения

Сравнение Deepcool LE520 Black vs Deepcool AK620 Black

Добавить в сравнение
Deepcool LE520 Black
Deepcool AK620 Black
Deepcool LE520 BlackDeepcool AK620 Black
от 42 420 тг.
Ожидается в продаже
Сравнить цены 2
Отзывы
0
0
1
0
0
0
0
1
ТОП продавцы
Главное
Двухбашенная конструкция. Шесть теплотрубок. Два гидродинамических вентилятора. Теплоотвод 260 Вт. Длинная отвертка в комплекте.
Основное
Назначениедля процессорадля процессора
Типводяное охлаждениеактивный кулер
Выдув воздушного потокавбок (рассеивание)
Двухбашенная конструкция
Максимальный TDP260 Вт
Вентилятор
Кол-во вентиляторов2 шт2 шт
Диаметр вентилятора120 мм
120 мм /FK120 (DF1202512CM)/
Тип подшипникагидродинамическийгидродинамический
Минимальные обороты500 об/мин500 об/мин
Максимальные обороты2250 об/мин1850 об/мин
Регулятор оборотовавто (PWM)авто (PWM)
Макс. воздушный поток85.85 CFM68.99 CFM
Статическое давление3.27 мм H2O2.19 мм H2O
Возможность замены
Уровень шума33 дБ28 дБ
Источник питания4-pin4-pin
Радиатор
Тепловых трубок6 шт
Контакт теплотрубокнепрямой
Материал радиатораалюминийалюминий/медь
Материал подложкимедьникелированная медь
Пространство для ОЗУ42 мм
Socket
AMD AM4
AMD AM5
Intel 1150
Intel 1155/1156
 
 
Intel 1151 / 1151 v2
Intel 1200
Intel 1700 / 1851
AMD AM4
AMD AM5
Intel 1150
Intel 1155/1156
Intel 2011 / 2011 v3
Intel 2066
Intel 1151 / 1151 v2
Intel 1200
Intel 1700 / 1851
Система водяного охлаждения
Размер радиатора240 мм
Размер помпы91x80x52 мм
Скорость вращения помпы2400 об/мин
Длина трубки410 мм
Источник питания помпы3-pin
Общее
Подсветка
Цвет подсветкиARGB
Синхронизация подсветкиmulti compatibility
Тип креплениядвусторонний (backplate)двусторонний (backplate)
Гарантия производителя3 года
Габариты
282x120x27 мм /радиатора/
129x138x160 мм
Высота160 мм
Вес1238 г1456 г
Дата добавления на E-Katalogавгуст 2023ноябрь 2021

Тип

Вентилятор. Классический вентилятор — моторчик с лопастями, обеспечивающий поток воздуха; также сюда входят комплекты из нескольких вентиляторов. В любом случае не стоит путать такие приспособления с кулерами (см. ниже) — вентиляторы не имеют радиаторов. Практически все решения этого типа предназначены для корпусов (см. «Назначение»), лишь единичные модели рассчитаны на «обдув» жестких дисков или чипсетов.

Реверсивный вентилятор. Разновидность вентиляторов (см. выше), у которых крыльчатка вывернута в обратную сторону. Сделано это для того, что при размещении сзади корпуса «системника» или в его верхней части можно было придать сборке эстетичный внешний вид — реверсивный вентилятор будет установлен лицевой стороной для вдува воздуха. Применяются такие решения в основном для боковых стенок корпусов типа «аквариум».

Радиатор. Конструкция из теплопроводящего материала, имеющая специальную ребристую форму. Такая форма обеспечивает большую площадь соприкосновения с воздухом, как следствие — хорошую теплоотдачу. Радиаторы не потребляют энергии и работают абсолютно бесшумно, однако не отличаются эффективностью. Поэтому в чистом виде они встречаются крайне редко, а предназначаются такие модели либо для маломощных компонентов ПК с низким тепловыделением (энергоэффективные процессоры, жесткие диски и т.п.), либо для сборки активного кулера (см. ниже) из отдельн...о купленных вентилятора и радиатора (этот вариант встречается среди решений под видеокарты).

Активный кулер. Приспособление в виде радиатора с установленным на нем вентилятором; при этом во многих моделях радиатор не контактирует с охлаждаемым компонентом напрямую, а соединяется с ним при помощи тепловых трубок, при этом выдув воздуха осуществяется вбок (так называемая башенная компоновка, особенно популярная в системах для CPU; подробнее см. «Выдув воздушного потока»). В любом случае подобные конструкции, с одной стороны, сравнительно просты и недороги, с другой — довольно эффективны, благодаря чему они являются чрезвычайно популярным типом СО. В частности, именно в данном формате выпускается большинство решений для процессоров (в т.ч. башенные и боксовые), а в целом кулеры могут применяться практически для любого компонента системы, за исключением корпуса.

Водяное охлаждение. Системы водяного охлаждения состоят из трех основных частей: ватерблока, непосредственно контактирующего с охлаждаемым компонентом (обычно процессором), внешнего охладителя, а также помпы (отдельной или встроенной в охладитель). Эти компоненты соединяются шлангами, по которым циркулирует вода (или другой аналогичный теплоноситель) — она и обеспечивает перенес тепла. А охлаждающий блок обычно представляет собой кулер — систему из вентиляторов и радиаторов, которая рассеивает тепловую энергию в окружающем воздухе. Водяные системы заметно эффективнее активных кулеров (см. выше), они подходят даже для очень мощных и «горячих» CPU, с которым традиционные кулеры справляются с трудом. С другой стороны, данный тип охлаждения довольно громоздок и сложен в монтаже, да и обходится недешево.

Комплект СЖО. Комплект для самостоятельной сборки системы жидкостного (водяного) охлаждения. В данном случае подразумевается, что вся система поставляется в виде набора деталей, из которого пользователь должен сам собрать готовую СЖО. Ее установка получается более сложной, нежели традиционных водяных систем. Поэтому комплектов СЖО выпускается немного, а рассчитаны они в основном на энтузиастов, которые любят экспериментировать с оформлением и конструкцией своих ПК.

— Backplate. Цельная металлическая пластина, используемая в качестве крепежного элемента системы охлаждения. Служит для предотвращения перегиба материнской платы или видеокарты при развертывании системы отвода тепла, а также обеспечивает пассивное охлаждение задней стороны тех модулей, с которыми соседствует.

— Водоблок VRM. Водоблок, обеспечивающий эффективное охлаждение элементов подсистемы питания центрального процессора VRM (Voltage Regulator Module).

Водоблок CPU. Теплообменник из меди или никеля, предназначенный для отвода тепла от CPU через охлаждающую жидкость. Используется в системах водяного охлаждения компьютеров. Чаще всего процессорные водоблоки снабжаются креплением под определенные процессорные платформы.

— Водоблок GPU. Блоки жидкостного охлаждения для максимально эффективного отвода тепла от видеокарты. Выпускаются подобные решения под конкретную группу видеокарт на одном графическом процессоре. Состоят водоблоки GPU из двух основных частей: верхней, где расположены теплосъемник из медного сплава, пластиковая накладка с жидкостными каналами и кожух для придания конструкции жёсткости, а также металлической пластины в нижней части блока на обратную сторону печатной платы.

— Набор креплений. Набор креплений для монтажа охлаждающих систем на элементах материнской платы компьютера. Выпускаются под конкретные версии сокета.

Выдув воздушного потока

Направление, в котором из активного кулера (см. «Тип») выходит поток воздуха.

Данный параметр актуален прежде всего для моделей, используемых с процессорами, варианты же могут быть такими:

— Вбок (рассеивание). Формат работы, характерный для кулеров так называемой башенной конструкции. В таких моделях вентилятор установлен перпендикулярно подложке, контактирующей с процессором, благодаря чему воздушный поток движется параллельно материнской плате. Это обеспечивает максимальную эффективность: нагретый воздух не возвращается к процессору и другим компонентам системы, а рассеивается в корпусе (и практически сразу выходит наружу, если в компьютере есть хотя бы один корпусной вентилятор). Главный недостаток данного варианта — большая высота конструкции, которая может затруднить ее размещение в некоторых системниках. Однако в большинстве случаев этот момент не является принципиальным — особенно если речь идет о мощной системе охлаждения, рассчитанной на продвинутую систему с производительным «горячим» процессором. Так что именно боковое рассеивание в наше время является наиболее популярным вариантом — особенно в кулерах с максимальным TDP 150 Вт и выше (хотя и более скромные модели нередко используют данную компоновку).

— Вниз (на материнку). Подобный формат работы позволяет «уложить» вентилятор с радиатором плашмя на материнскую плату, заметно уменьшив высоту всего кулера (по сравнению с моделями, использующими боковой выдув). С другой стороны, дан...ный формат работы не отличается эффективностью — ведь прежде чем рассеяться по корпусу, горячий воздух снова обдувает плату с процессором. Так что в наше время данный вариант встречается сравнительно редко, причем в основном в маломощных кулерах с допустимым TDP до 150 Вт. А обращать внимание на подобные модели стоит в основном тогда, когда пространства в корпусе немного и небольшая высота кулера более важна, чем высокая эффективность.

Двухбашенная конструкция

Особенность, встречающаяся в отдельных активных кулерах для процессора (см. «Назначение»).

О башенной компоновке в целом см. «Выдув возлушного потока» ниже. А двухбашенная конструкция означает, что кулер имеет два рабочих блока — то есть два вентилятора и два радиатора. Соответственно, и тепловых трубок в конструкции больше, чем в однобашенных моделях — как минимум их 4, а чаще 5 – 6 или даже больше. Подобная компоновка может значительно увеличить эффективность охлаждения; с другой стороны, она также заметно сказывается на габаритах, весе и цене.

Максимальный TDP

Максимальный TDP, обеспечиваемый системой охлаждения. Отметим, что данный параметр указывается только для решений, оснащенных радиаторами (см. «Тип»); для отдельно выполненных вентиляторов эффективность определяется другими параметрами, прежде всего значениями воздушного потока (см. выше).

TDP можно описать как количество тепла, которое система охлаждения способна отвести от обслуживаемого компонента. Соответственно, для нормальной работы всей системы нужно, чтобы TDP системы охлаждения был не ниже тепловыделения этого компонента (данные по тепловыделению обычно указываются в подробных характеристиках комплектующих). А лучше всего подбирать охладители с запасом по мощности хотя бы в 20 – 25 % — это даст дополнительную гарантию на случай форсированных режимов работы и нештатных ситуаций (в том числе засорения корпуса и снижения эффективности воздухообмена).

Что касается конкретных чисел, то наиболее скромные современные системы охлаждения обеспечивают TDP до 100 Вт, наиболее продвинутые — до 250 Вт и даже выше.

Максимальные обороты

Наибольшие обороты, на которых способен работать вентилятор системы охлаждения; для моделей без регулятора оборотов (см. ниже) в данном пункте указывается штатная скорость вращения. В самых «медленных» современных вентиляторах максимальная скорость не превышает 1000 об/мин, в самых «быстрых» может составлять до 2500 об/мин и даже более .

Отметим, что данный параметр плотно связан с диаметром вентилятора (см. выше): чем меньше диаметр, тем выше должны быть обороты для достижения нужных значений воздушного потока. При этом скорость вращения напрямую влияет на уровень шума и вибраций. Поэтому считается, что нужный объем воздуха лучше всего обеспечивать крупными и сравнительно «медленными» вентиляторами; а «быстрые» небольшие модели имеет смысл применять там, где компактность имеет решающее значение. Если же сравнивать по скорости модели одинакового размера, то более высокие обороты положительно сказываются на производительности, однако повышают не только уровень шума, но также цену и энергопотребление.

Макс. воздушный поток

Максимальный воздушный поток, который может создать вентилятор системы охлаждения; измеряется в CFM — кубических футах в минуту.

Чем выше число CFM — тем эффективнее вентилятор. С другой стороны, высокая производительность требует либо большого диаметра (что сказывается на габаритах и стоимости), либо высокой скорости (а она повышает уровень шума и вибраций). Поэтому при выборе имеет смысл не гнаться за максимальным воздушным потоком, а воспользоваться специальными формулами, позволяющими рассчитать необходимое число CFM в зависимости от типа и мощности охлаждаемого компонента и других параметров. Такие формулы можно найти в специальных источниках. Что же касается конкретных чисел, то в наиболее скромных системах производительность не превышает 30 CFM, а в наиболее мощных может составлять свыше 80 CFM.

Также стоит учитывать, что фактическое значение воздушного потока на наибольших оборотах обычно ниже заявленного максимального; подробнее см. «Статическое давление».

Статическое давление

Максимальное статическое давление воздуха, создаваемое вентилятором при работе.

Данный параметр измеряется следующим образом: если вентилятор установить на глухой трубе, откуда нет выхода воздуха, и включить на вдув, то достигнутое в трубе давление и будет соответствовать статическому. На практике же этот параметр определяет общую эффективность работы вентилятора: чем выше статическое давление (при прочих равных) — тем проще вентилятору «протолкнуть» нужный объем воздуха через пространство с высоким сопротивлением, например, через узкие прорези радиатора или через набитый комплектующими корпус.

Также данный параметр используется при некоторых специфических вычислениях, однако эти вычисления довольно сложны и рядовому пользователю, как правило, не нужны — они связаны с нюансами, актуальными в основном для энтузиастов-компьютерщиков. Подробнее об этом можно прочитать в специальных источниках.

Уровень шума

Стандартный уровень шума, создаваемого системой охлаждения при работе. Обычно в данном пункте указывается максимальный шум при штатном режиме работы, без перегрузок и прочего «экстрима».

Отметим, что уровень шума обозначается в децибелах, а это нелинейная величина. Так что оценивать фактическую громкость проще всего по сравнительных таблицам. Вот такая таблица для значений, встречающихся в современных системах охлаждения:

20 дБ — еле слышимый звук (тихий шёпот человека на расстоянии около 1 м, звуковой фон на открытом поле за городом в безветренную погоду);
25 дБ — очень тихо (обычный шёпот на расстоянии 1 м);
30 дБ — тихо (настенные часы). Именно такой шум по санитарным нормам является максимально допустимым для постоянных источников звука в ночное время (с 23.00 до 7.00). Это значит, что если компьютером планируется сидеть ночью — желательно, чтобы громкость системы охлаждения не превышала данного значения.
35 дБ — разговор вполголоса, звуковой фон в тихой библиотеке;
40 дБ — разговор, сравнительно негромкий, но уже в полный голос. Максимально допустимый по санитарным нормам уровень шума для жилых помещений в дневное время, с 7.00 до 23.00. Впрочем, даже самые шумные системы охлаждения обычно не дотягивают до данного показателя, максимум для подобной техники составляет около 38 – 39 дБ.

Тепловых трубок

Количество тепловых трубок в системе охлаждения

Тепловая трубка представляет собой герметичную конструкцию, в которой находится легкокипящая жидкость. При нагреве одного конца трубки эта жидкость испаряется и конденсируется в другом конце, отбирая таким образом тепло у источника нагрева и передавая его охладителю. В наше время такие приспособления широко применяются в основном в процессорных системах охлаждения (см. «Назначение») — они соединяют между собой подложку, непосредственно контактирующую с CPU, и радиатор активного кулера. Производители подбирают число трубок, ориентируясь на общую производительность кулера (см. «Максимальный TDP»); однако модели со схожими показателями TDP все же могут заметно различаться по данному параметру. В таких случаях стоит учитывать следующее: увеличение числа тепловых трубок повышает эффективность передачи тепла, однако увеличивает также габариты, вес и стоимость всей конструкции.

Что касается количества, то в простейших моделях предусматривается 1 – 2 тепловые трубки, а в наиболее продвинутых и мощных процессорных системах это число может составлять 7 и более.
Deepcool LE520 Black часто сравнивают
Deepcool AK620 Black часто сравнивают