Тип подшипника
Тип подшипника, используемого в вентиляторе (вентиляторах) системы охлаждения.
Подшипник — это деталь между вращающейся осью вентилятора и неподвижным основанием, которая поддерживает ось и снижает трение. В современных вентиляторах встречаются такие типы подшипников:
—
Скольжения. Действие таких подшипников основано на прямом контакте между двумя сплошными поверхностями, тщательно отполированными для снижения трения. Подобные приспособления просты, надежны и долговечны, однако эффективность их достаточно невысока — качение, а тем более гидродинамический и магнитный принцип работы (см. ниже) обеспечивают значительно меньшее трение.
—
Качения. Также называются «шарикоподшипниками», так как «посредниками» между осью вращения и неподвижным основанием являются шарики (реже — цилиндрические ролики), закрепленные в специальном кольце. При вращении оси такие шарики катятся между ней и основанием, за счет чего сила трения получается очень невысокой — заметно ниже, чем в подшипниках скольжения. С другой стороны, конструкция получается более дорогой и сложной, а по надежности она несколько уступает как тем же подшипникам скольжения, так и более продвинутым гидродинамическим приспособлениям (см. ниже). Поэтому, хотя подшипники качения в наше время достаточно широко распространены, однако в целом они встречаются заметно реже упомянутых разновидностей.
—
Гидродинамический. Подшипники этого типа заполнены специальной жидкостью; при вращении она создаёт прослойку, по которой скользит подвижная часть подшипника. Таким образом удаётся избежать непосредственного контакта между твёрдыми поверхностями и значительно снизить трение по сравнению с предыдущими типами. Также такие подшипники тихо работают и весьма надёжны. Из их недостатков можно отметить сравнительно высокую стоимость, однако на практике этот момент нередко оказывается незаметным на фоне цены всей системы. Поэтому данный вариант в наше время чрезвычайно популярен, его можно встретить в системах охлаждения всех уровней — от бюджетных до продвинутых.
—
Магнитное центрирование. Подшипники, основанные на принципе магнитной левитации: вращающаяся ось «подвешена» в магнитном поле. Таким образом удаётся (как и в гидродинамических) избежать контакта между твёрдыми поверхностями и ещё больше снизить трение. Считаются наиболее продвинутым типом подшипников, надёжны и бесшумны, однако стоят дорого.
Минимальные обороты
Наименьшие обороты, на которых способен работать вентилятор системы охлаждения. Указываются только для моделей, имеющих регулятор оборотов (см. ниже).
Чем ниже минимальные обороты (при том же максимуме) — тем шире диапазон регулировки скорости и тем сильнее можно замедлить вентилятор, когда высокая производительность не нужна (такое замедление позволяет снизить потребление энергии и уровень шума). С другой стороны, обширный диапазон соответствующим образом сказывается на стоимости.
Макс. воздушный поток
Максимальный воздушный поток, который может создать вентилятор системы охлаждения; измеряется в CFM — кубических футах в минуту.
Чем выше число CFM — тем эффективнее вентилятор. С другой стороны, высокая производительность требует либо большого диаметра (что сказывается на габаритах и стоимости), либо высокой скорости (а она повышает уровень шума и вибраций). Поэтому при выборе имеет смысл не гнаться за максимальным воздушным потоком, а воспользоваться специальными формулами, позволяющими рассчитать необходимое число CFM в зависимости от типа и мощности охлаждаемого компонента и других параметров. Такие формулы можно найти в специальных источниках. Что же касается конкретных чисел, то в наиболее скромных системах производительность
не превышает 30 CFM, а в наиболее мощных может составлять
свыше 80 CFM.
Также стоит учитывать, что фактическое значение воздушного потока на наибольших оборотах обычно ниже заявленного максимального; подробнее см. «Статическое давление».
Статическое давление
Максимальное статическое давление воздуха, создаваемое вентилятором при работе.
Данный параметр измеряется следующим образом: если вентилятор установить на глухой трубе, откуда нет выхода воздуха, и включить на вдув, то достигнутое в трубе давление и будет соответствовать статическому. На практике же этот параметр определяет общую эффективность работы вентилятора: чем выше статическое давление (при прочих равных) — тем проще вентилятору «протолкнуть» нужный объем воздуха через пространство с высоким сопротивлением, например, через узкие прорези радиатора или через набитый комплектующими корпус.
Также данный параметр используется при некоторых специфических вычислениях, однако эти вычисления довольно сложны и рядовому пользователю, как правило, не нужны — они связаны с нюансами, актуальными в основном для энтузиастов-компьютерщиков. Подробнее об этом можно прочитать в специальных источниках.
Наработка на отказ
Общее время, которое вентилятор системы охлаждения способен гарантированно проработать до выхода из строя. Отметим, что при исчерпании этого времени устройство не обязательно сломается — многие современные вентиляторы имеют значительный запас прочности и способны проработать ещё какой-то период. В то же время оценивать общую долговечность системы охлаждения стоит именно по данному параметру.
Мин. уровень шума
Наименьший уровень шума, производимый системой охлаждения при работе.
Данный параметр указывается только для тех моделей, которые имеют регулировку производительности и могут работать на пониженной мощности. Соответственно, минимальный уровень шума — это уровень шума на самом «тихом» режиме, громкость работы, меньше которой у данной модели быть не может.
Эти данные будут полезны прежде всего тем, кто старается максимально снизить уровень шума и, что называется, «борется за каждый децибел». Однако здесь стоит отметить, что во многих моделях минимальные значения составляют порядка 15 дБ, а в самых тихих — всего 10 – 11 дБ. Эта громкость сравнима с шелестом листьев и практически теряется на фоне окружающего шума даже в жилом помещении ночью, не говоря уже о более «громких» условиях, причем разница между 11 и 18 дБ в данном случае не является сколь-либо значимой для человеческого восприятия. А сравнительная таблица по звуку начиная с 20 дБ приведена в п. «Уровень шума» ниже.
Уровень шума
Стандартный уровень шума, создаваемого системой охлаждения при работе. Обычно в данном пункте указывается максимальный шум при штатном режиме работы, без перегрузок и прочего «экстрима».
Отметим, что уровень шума обозначается в децибелах, а это нелинейная величина. Так что оценивать фактическую громкость проще всего по сравнительных таблицам. Вот такая таблица для значений, встречающихся в современных системах охлаждения:
20 дБ — еле слышимый звук (тихий шёпот человека на расстоянии около 1 м, звуковой фон на открытом поле за городом в безветренную погоду);
25 дБ — очень тихо (обычный шёпот на расстоянии 1 м);
30 дБ — тихо (настенные часы). Именно такой шум по санитарным нормам является максимально допустимым для постоянных источников звука в ночное время (с 23.00 до 7.00). Это значит, что если компьютером планируется сидеть ночью — желательно, чтобы громкость системы охлаждения не превышала данного значения.
35 дБ — разговор вполголоса, звуковой фон в тихой библиотеке;
40 дБ — разговор, сравнительно негромкий, но уже в полный голос. Максимально допустимый по санитарным нормам уровень шума для жилых помещений в дневное время, с 7.00 до 23.00. Впрочем, даже самые шумные системы охлаждения обычно не дотягивают до данного показателя, максимум для подобной техники составляет около 38 – 39 дБ.
Материал подложки
Материал, из которого выполнена подложка системы охлаждения — поверхность, непосредственно контактирующая с охлаждаемым компонентом (чаще всего с процессором). Данный параметр особенно важен для моделей с использованием тепловых трубок (см. выше) , хотя он может указываться и для кулеров без этой функции. Варианты же могут быть такими:
алюминий,
никелированый алюминий,
медь,
никелированная мель. Подробней о них.
— Алюминий. Традиционный, наиболее распространенный материал подложки. При относительно невысокой стоимости алюминий имеет неплохие характеристики теплопроводности, легко поддается шлифовке (необходимой для плотного прилегания) и хорошо противостоит появлению царапин и других неровностей, а также коррозии. Правда, по эффективности теплоотвода этот материал все же уступает меди — однако это становится заметно в основном в продвинутых системах, требующих максимально высокой теплопроводности.
— Медь. Медь обходится заметно дороже алюминия, однако это компенсируется более высокой теплопроводностью и, соответственно, эффективностью охлаждения. К заметным недостаткам этого металла можно отнести некоторую склонность к коррозии при воздействии влаги и определенных веществ. Поэтому в чистом виде медь используется сравнительно редко — чаще встречаются никелированные подложки (см. ниже).
— Никелированная медь. По
...дложка из меди, имеющая дополнительное покрытие из никеля. Такое покрытие увеличивает стойкость к коррозии и царапинам, при этом оно практически не влияет на теплопроводность подложки и эффективность работы. Правда, данная особенность несколько увеличивает цену радиатора, однако встречается она в основном в высококлассных системах охлаждения, где этот момент практически незаметен на фоне общей стоимости устройства.
— Никелированный алюминий. Подложка из алюминия с дополнительным покрытием из никеля. Об алюминии в целом см. выше, а покрытие повышает стойкость радиатора к коррозии, царапинам и появлению неровностей. С другой стороны, оно сказывается на стоимости, притом что на практике для эффективной работы нередко бывает вполне достаточно и чистого алюминия (тем более что этот металл сам по себе весьма устойчив к коррозии). Поэтому данный вариант распространения не получил.Socket
Тип сокета — разъема для процессора — с которым (которыми) совместима соответствующая система охлаждения.
Разные сокеты различаются не только по совместимости с тем или иным CPU, но и по конфигурации посадочного места для системы охлаждения. Так что, приобретая процессорную систему охлаждения отдельно, стоит убедиться в ее совместимости с разъемом. В наше время выпускаются решения в основном под такие типы сокетов:
AMD AM2/AM3/FM1/FM2,
AMD AM4,
AMD AM5,
AMD TR4/TRX4,
Intel 775,
Intel 1150,
Intel 1155/1156,
Intel 1366,
Intel 2011/ 2011 v3,
Intel 2066,
Intel 1151 / 1151 v2,
Intel 1200,
Intel 1700.