Диаметр объектива
Диаметр объектива — передней линзы прицела. Также этот параметр называют «апертура».
Данный параметр важен прежде всего для оптических прицелов и их специализированных разновидностей — «ночников» и тепловизоров (см. «Тип»). Чем крупнее объектив — тем больше света в него попадает, тем выше качество изображения и тем эффективнее устройство будет работать при слабом освещении, однако тем дороже обойдется такая оптика. Здесь стоит отметить, что требования к апертуре зависят еще и от степени увеличения: проще говоря, для невысоких кратностей особо крупные объективы не требуются. Поэтому относительно небольшие входные линзы, диаметром в
25 – 35 мм и даже
меньше, встречаются во всех ценовых категориях классической оптики — от бюджетной до топовой. А сравнивать по апертуре можно лишь модели с одинаковым максимальным увеличением, да и то весьма приблизительно — стоит помнить, что качество изображения сильно зависит еще и от общего качества компонентов прицела.
В свою очередь, для ночных прицелов, особенно на основе ЭОП (см. «Принцип работы ПНВ»), крупная апертура принципиально важна. Так что диаметр
от 36 до 45 мм считаtтся для таких устройств очень небольшим и встречается лишь в некоторых цифровых моделях, большинство же «ночников» оснащается объективами на
46 мм и более.
...
Что касается коллиматоров, то в них от апертуры зависит преимущественно размер пространства, попадающего в прицел. Причем фактически видимый размер можно изменять, устанавливая прицел ближе или дальше к глазу — принцип работы коллиматоров дает такую возможность. Отметим также, что для моделей с линзами прямоугольной или схожей с ней формы размер объектива обычно указывается по диагонали.Диаметр выходного зрачка
Диаметр выходного зрачка, создаваемого оптической системой прицела.
Выходным зрачком называют проекцию передней линзы объектива, построенную оптикой в районе окуляра; это изображение можно наблюдать в виде характерного светлого кружка, если смотреть в окуляр не вплотную, а с расстояния в 30 – 40 см. Диаметр этого кружка можно вычислить, поделив диаметр объектива на кратность (см. выше). Например, модель 8х40 будет иметь диаметр зрачка 40/8=5 мм. Данный показатель определяет общую светосилу прибора и, соответственно, качество изображения при слабой освещённости: чем больше диаметр зрачка, тем светлее будет «картинка» (разумеется, при одинаковом качестве линз, т.к. оно тоже влияет на яркость).
Кроме того, считается, что диаметр у выходного зрачка должен быть не меньше, чем у зрачка человеческого глаза — а размер последнего может изменяться. Так, при дневном свете зрачок в глазу имеет размер в 2 – 3 мм, а в темноте — 7-8 мм у подростков и взрослых и около 5 мм у пожилых людей. Этот момент стоит учесть при выборе модели под конкретные условия: ведь светосильная оптика стоит дорого, и навряд ли имеет смысл переплачивать за крупный зрачок, если прицел нужен Вам исключительно для дневного применения.
Вынос выходного зрачка
Выносом называют расстояние между линзой окуляра и выходным зрачком оптического прибора (см. «Диаметр выходного зрачка»). Оптимальное качество изображения достигается в том случае, когда выходной зрачок проецируется прямо на глаз наблюдателя; так что с практической точки зрения вынос — это такое расстояние от глаза до линзы окуляра, на котором обеспечивается наилучшая видимость и отсутствует затемнение краёв (виньетирование). Большой вынос особенно важен в том случае, если прицел планируется использовать одновременно с очками — ведь в таких случаях нет возможности поднести окуляр вплотную к глазу, да и от очков он должен находиться на некотором расстоянии, дабы не ударить по стеклу за счёт отдачи.
Поле зрения на расстоянии 100 м
Диаметр области, видимой в прицел с расстояния в 100 м — иными словами, наибольшее расстояние между двумя точками, при котором их можно одновременно увидеть с этого расстояния. Также его называют «линейным полем зрения». Этот показатель для многих пользователей удобнее, чем угловое поле зрения (угол между линиями, соединяющими объектив и крайние точки видимого изображения) — он весьма наглядно описывает возможности прибора.
В прицелах с регулировкой кратности (см. выше) может указываться как весь диапазон ширины — от максимальной до минимальной — так и только одно значение этого параметра. В последнем случае обычно берется наибольшая ширина поля зрения, на минимальной кратности.
Сумеречный фактор
Комплексный показатель, описывающий качество работы любой оптической системы (в т.ч. прицелов) в сумерках — когда освещение слабее, чем днём, но ещё не настолько тусклое, как глубоким вечером или ночью. Речь идёт в первую очередь о способности видеть через прибор мелкие детали.
Необходимость использования данного параметра связана с тем, что сумерки являются особыми условиями. При дневном свете видимость мелких деталей определяется в первую очередь кратностью оптики, при ночном — диаметром объектива (см. выше); в сумерках же на качество влияют оба этих показателя. Эту особенность и учитывает сумеречный фактор. Его конкретное значение вычисляется как квадратный корень из произведения кратности на диаметр объектива. Например, для прицела 8х40 сумеречный фактор будет составлять корень из 8х40=320, то есть приблизительно 17,8. В моделях с регулировкой кратности (см. выше) обычно указывается минимальный сумеречный фактор, соответствующий минимальному же увеличению.
Наименьшим значением этого параметра для нормальной видимости в сумерках считается 17. В то же время стоит отметить, что сумеречный фактор не учитывает фактического светопропускания системы — а оно сильно зависит от качества линз, применения просветляющих покрытий (см. ниже) и т.п. Поэтому реальное качество изображения в сумерках у двух моделей с одинаковым сумеречным фактором может заметно отличаться.
Прицельная сетка
Расположение прицельной сетки в оптическом прицеле (см. «Тип»).
Такая сетка может устанавливаться либо в
первой фокальной плоскости, FFP (грубо говоря, в районе объектива), либо во
второй, SFP (в районе окуляра). При этом для прицелов с фиксированной кратностью разница между этими вариантами заключается лишь в цене, поэтому в них используется только более простая и дешевая SFP. А вот в моделях с регулировкой кратности этот параметр напрямую влияет на особенности применения, эту разницу и разберем детальнее:
— В 1-й фокальной плоскости (FFP). Ключевое достоинство сеток в первой фокальной плоскости заключается в том, что их видимый размер при изменении кратности также изменяется прямо пропорционально. На практике это означает, что угловые размеры отдельных элементов сетки остаются неизменными независимо от выставленной степени увеличения. То есть, к примеру, если между двумя соседними точками заявлено расстояние в 1 MRAD — то оно будет составлять 1 MRAD во всем диапазоне регулировки кратностей. А значит, работать с сеткой для замера дистанций и взятия поправок можно по одним и тем же правилам, не обращая внимания на выбранную степень увеличения. Таким образом, прицелы FFP намного удобнее и проще в использовании чем SFP. С другой стороны, такие модели заметно сложнее и дороже; а многие охотничьи сетки — например, дуплекс или классический крест (см «Тип сетки») — вооб
...ще не имеет смысла устанавливать в первую фокальную плоскость. В свете всего этого данный вариант встречается сравнительно редко и только в моделях среднего и топового уровней, предназначенных для высокоточной стрельбы.
— Во 2-й фокальной плоскости (SFP). Наиболее распространенный вариант размещения прицельных сеток, в том числе в прицелах переменной кратности. Такая популярность обусловлена прежде всего простотой конструкции и невысокой стоимостью. Однако обратной стороной этих достоинств являются дополнительные сложности при использовании угломерных элементов сетки. Дело в том, что в SFP-прицелах видимый размер таких элементов при изменении кратности остается неизменным — а это значит, что размеры отдельных деталей на разных степенях увеличения будут соответствовать разным углам. Если точнее, то угловые размеры в таких системах изменяются в обратной пропорции относительно кратности: к примеру, если на кратности 5x расстояние между двумя соседними точками составляет 6 МОА, то на 15х оно уменьшится до 2 MOA. Таким образом, «истинный» угловой размер, указанный в характеристиках, элементы разметки имеют только на строго определенной кратности, в остальных же случаях этот размер нужно пересчитывать по специальным формулам. В то же время стоит отметить, что если сетка не имеет специальных угломерных элементов — то для нее этот недостаток становится практически неактуальным; в качестве примеров можно привести охотничьи сетки типа «полукрест» (традиционный, не «пенек») и «крест с кругом» (см. «Тип сетки»).Измерительные единицы сетки
Единицы измерения, которые применяются в разметке угломерных элементов прицельной сетки. В наше время встречаются две основных единицы:
—
MOA. Аббревиатура, обозначающая угловую минуту — 1/60 часть градуса. Изначально эта единица связана с английской системой мер и удобна прежде всего при расчетах в ярдах и дюймах: на дистанции в 100 ярдов угол в 1 MOA соответствует линейному размеру приблизительно в 1 дюйм. В более привычной для нас метрической системе это дает 2.91 см на дистанции в 100 м. Также отметим, что эта единица является своеобразным стандартом точности: считается, что полноценная снайперская винтовка должна давать разброс не больше 1 МОА.
—
MRAD. Условное обозначение милирадиана — угла в одну тысячную радиана (приблизительно 0.06°). Также на жаргоне снайперов эту единицу называют «тысячная», или «мил». Она привязана уже к метрической системе: на расстоянии в 100 м угол в 1 MRAD соответствует линейному размеру в 10 см (приблизительно в 3.5 раза больше, чем 1 MOA).
Выбор по данному показателю во многом зависит от личных предпочтений стрелка. Также отметим, что в бюджетных прицелах часто встречаются несостыковки: их барабаны размечены по шкале MOA, а сетка — в единицах измерения MRAD.