Казахстан
Каталог   /   Фототехника   /   Оптические приборы   /   Телескопы

Сравнение BRESSER Solarix 114/500 AZ (carbon) vs BRESSER Pluto II 114/500 EQ Carbon

Добавить в сравнение
BRESSER Solarix 114/500 AZ (carbon)
BRESSER Pluto II 114/500 EQ Carbon
BRESSER Solarix 114/500 AZ (carbon)BRESSER Pluto II 114/500 EQ Carbon
от 87 390 тг.
Товар устарел
от 144 180 тг.
Товар устарел
Главное
В комплектации есть специальный солнечный фильтр позволяющий наблюдать за солнцем без вреда для глаз и подставка для смартфона.
Конструкциязеркальный (рефлекторы)
зеркальный (рефлекторы) /Ньютон/
Тип монтировкиазимутальная (AZ1)
экваториальная /EQ2/
Характеристики
Диаметр объектива114 мм114 мм
Фокусное расстояние500 мм500 мм
Макс. полезное увеличение230 x228 x
Макс. разрешающее увеличение111 x171 x
Мин. увеличение20 x16 x
Светосила1/4.381/4.4
Проницающая способность12.4 зв.вел12.4 зв.вел
Разрешающая способность (Dawes)1.21 угл.сек1 угл.сек
Разрешающая способность (Rayleigh)1.23 угл.сек
Дополнительно
Искательс точечной наводкой (LED)с точечной наводкой (LED)
Фокусерреечныйреечный
Окуляры25 мм, 9 мм25 мм, 4 мм
Посадочный диаметр окуляра1.25 "1.25 "
Линза Барлоу2 х3 х
Солнечный фильтр
Зеркалосферическое
Адаптер для смартфона
Общее
Крепление трубыкрепежные винты
Длина трубы60 см47 см
Высота штатива145 см120 см
Общий вес3.5 кг9 кг
Дата добавления на E-Katalogиюль 2018сентябрь 2016

Тип монтировки

Тип монтировки, которой оснащен телескоп.

Монтировка — это механический узел, с помощью которого телескоп крепится к штативу или ( в отдельных случаях) устанавливается прямо на землю. Помимо крепления, этот узел отвечает также за наведение оптики в определенную точку неба. Наибольшей популярностью в наше время пользуются азимутальные приспособления в разных вариациях — AZ1, AZ2, AZ3, а также в виде так называемой монтировки Добсона. Экваториальные механизмы разных моделей (EQ1, EQ2, EQ3, EQ4, EQ5) заметно сложнее и дороже, зато и возможностей дают больше. Встречаются системы, сочетающие сразу оба этих типа монтировок — так называемые азимутально-экваториальные. И, наконец, отдельные телескопы и вовсе поставляются без монтировки. Вот более подробное описание этих вариантов:

— Азимутальная. Полное название — «альт-азимутальная». Традиционно имеет две оси поворота телескопа — одну для наведения по высоте, вторую по азимуту. Разные модели таких монтировок различаются по дополнительным возможностям управления:
  • AZ1. Не имеют системы точного движения. ...i>AZ2. Оснащены системой точного движения по вертикали (вокруг горизонтальной оси).
  • AZ3. Оснащены системами точного движения по обеим осям.
В любом случае вторая ось (азимутальная) в таких системах всегда располагается вертикально, вне зависимости от географического положения телескопа; в этом и состоит ключевое отличие от описанных ниже экваториальных монтировок. В целом азимутальные механизмы достаточно просты и недороги сами по себе, при этом вполне удобны и практичны, благодаря чему именно данный вариант пользуется наибольшей популярностью в наше время. Кроме того, они идеально подходят для наблюдений за наземными объектами. Ключевым недостатком данного варианта является слабая пригодность к непрерывному «сопровождению» небесных тел (движущихся по небосводу вследствие вращения Земли). Если в правильно настроенном экваториальном механизме для этого нужно поворачивать телескоп всего по одной оси, то в азимутальном нужно задействовать обе оси, причем неравномерно. Ситуацию можно решить при помощи системы автослежения, но эта функция заметно влияет на цену всего прибора. И даже ее наличие не гарантирует, что телескоп подойдет для астрофотографии на длительных выдержках — ведь при таком использовании нужно обеспечивать не только точное движение по каждой отдельной оси, но еще поправку на поворот изображения в кадре (что предусматривается далеко не в каждой системе автослежения и еще более увеличивает цену).

— Добсона. Специфическая разновидность описанных выше азимутальных монтировок, применяемая почти исключительно в рефлекторах. Также предусматривает две оси вращения — горизонтальную и вертикальную. Ключевой особенностью монтировки Добсона является то, что она не рассчитана на штатив и устанавливается прямо на землю или другую ровную поверхность; для этого в конструкции предусматривается широкое массивное основание. Подобные системы отлично подходят для телескопов Ньютона, у которых окуляр располагается в передней части: благодаря низкому расположению тубуса на монтировке сам окуляр оказывается на достаточно удобной высоте. Также к преимуществам «добсонов» можно отнести простоту, невысокую стоимость и в то же время хорошую надежность, делающую их пригодными даже для крупных и тяжелых телескопов. Из недостатков нужно отметить слабую совместимость с неровными поверхностями, особенно твердыми, вроде сплошной скалы (тогда как штативы, используемые с другими типами монтировок, этого недостатка лишены).

— Экваториальная. Монтировки этого типа позволяют синхронизировать движение телескопа с движением небесных тел по небосводу, возникающим из-за вращения Земли. Условную вертикальную ось, отвечающую за поворот телескопа из стороны в сторону, в таких механизмах называют осью прямого восхождения (R.A.), а горизонтальную (для наведения по условной вертикали) — осью склонений (Dec.). Перед использованием экваториальная монтировка настраивается так, чтобы ось прямого восхождения была направлена на «полюс мира», параллельно оси вращения Земли («оси мира»); конкретный наклон относительно вертикали зависит от географической широты места наблюдений. Такой формат работы заметно усложняет как конструкцию самой монтировки, так и процедуру ее установки. С другой стороны, экваториальные системы идеально подходят для длительного «сопровождения» астрономических объектов: чтобы компенсировать движение небесного тела из-за вращения Земли и удерживать цель в поле зрения, достаточно вращать телескоп вокруг оси R.A. вправо (по часовой стрелке), причем с четко определенной скоростью — 15° в час, независимо от положения объекта по вертикали. Это делает подобные конструкции идеальным вариантом для астрофотографии — в том числе объектов дальнего космоса, для которых требуются длительные выдержки. Фактически для этого даже не нужна полноценная система автослежения — достаточно сравнительно простого часового механизма, вращающего телескоп вокруг оси прямого восхождения. Обратной стороной этих преимуществ, помимо упомянутой сложности и высокой стоимости, является слабая пригодность для крупных тяжелых телескопов — с увеличением веса прибора вес подходящей экваториальной системы увеличивается еще быстрее.
Что касается разных моделей подобных монтировок, то они маркируются буквенно-цифровым индексом, от EQ1 до EQ5. В целом чем больше число в обозначении — тем крупнее и тяжелее сама конструкция (включая треногу, если она поставляется в комплекте), тем хуже она подходит для перемещения с места на место, однако тем лучше гасит вибрации и сотрясения. А вот ограничения по весу телескопа с моделью экваториальной монтировки напрямую не связаны.

— Азимутально-экваториальная. Механизмы, сочетающие в себе сразу два типа монтировок. Выглядит это так: на штатив установлена азимутальная система, а на ней — экваториальная, в которой уже крепится телескоп. Подобная конструкция позволяет использовать возможности обеих типов монтировки. Так, азимутальный механизм вполне подходит для наблюдений за крупными небесными телами ближнего космоса (Луна, планеты) и обширными участками неба (такими, как созвездия), при этом он не требует сложной предварительной настройки. А для астрофотосъемки или для рассматривания объектов дальнего космоса на больших увеличениях удобнее использовать экваториальную систему. Однако на практике подобная универсальность требуется крайне редко, притом что сочетание двух типов монтировок усложняет конструкцию, увеличивает ее стоимость и снижает надежность. Так что этот вариант можно встретить в единичных моделях телескопов.

— Без монтировки. Полное отсутствие монтировочной системы в комплекте не позволяет применять телескоп «из коробки». Тем не менее, оно бывает оптимальным вариантом в некоторых случаях. Первый — если пользователь хочет выбрать монтировку на свое усмотрение, не полагаясь на решение производителя, или даже собрать ее самостоятельно (так, довольно много астрономов изготавливают свои собственные системы Добсона). Второй характерный случай — если в хозяйстве уже есть монтировка (например, от старого телескопа, пришедшего в негодность), и переплачивать за вторую просто незачем. В любом случае при выборе подобной модели стоит обращать особое внимание на тип крепления, на который рассчитана труба — от него напрямую зависит совместимость с конкретной монтировкой.

Макс. полезное увеличение

Наибольшее полезное увеличение, которое способен обеспечить телескоп.

Фактическая степень увеличения телескопа зависит от фокусных расстояний объектива (см. выше) и окуляра. Поделив первое на второе, получаем степень увеличения: например, система с объективом 1000 мм и окуляром 5 мм даст 1000/5 = 200х (при отсутствии других элементов, влияющих на кратность, таких как линза Барлоу — см. ниже). Таким образом, устанавливая в телескоп разные окуляры, можно изменять степень его увеличения. Однако повышать кратность сверх определённого предела попросту не имеет смысла: хотя видимые размеры объектов при этом будут увеличиваться, их детализация не улучшится, и вместо небольшого и чёткого изображения наблюдатель будет видеть крупное, но расплывчатое. Максимальное полезное увеличение как раз и является тем пределом, выше которого телескоп попросту не сможет обеспечить нормальное качество изображения. Считается, что по законам оптики этот показатель не может быть больше, чем диаметр объектива в миллиметрах, умноженный на два: например, для модели с входной линзой на 120 мм максимальное полезное увеличение составит 120х2=240х.

Отметим, что работа на данной степени кратности не означает максимального качества и чёткости изображения, однако в некоторых случаях может оказаться весьма удобной; подробнее об этом см. «Макс. разрешающее увеличение»

Макс. разрешающее увеличение

Наибольшее разрешающее увеличение, которое может обеспечить телескоп. Фактически — это увеличение, при котором телескоп обеспечивает максимальную детализацию изображения и позволяет видеть все мелкие подробности, которые в него в принципе возможно увидеть. При снижении степени увеличения ниже данного значения уменьшается размер видимых деталей, что ухудшает их видимость, при увеличении становятся заметны дифракционные явления, вследствие которых детали начинают расплываться.

Максимальное разрешающее увеличение меньше максимального полезного (см. выше) — оно составляет где-то 1,4…1,5 от диаметра объектива в миллиметрах (разные формулы дают разное значение, однозначно же определить это значение невозможно, поскольку многое зависит от субъективных ощущений наблюдателя и особенностей его зрения). Однако именно с такой кратностью стоит работать, если Вы хотите рассмотреть максимальное количество деталей — например, неровности на поверхности Луны или двойные звёзды. Более крупное увеличение (в пределах максимального полезного) имеет смысл брать только для рассматривания ярких контрастных объектов, а также в том случае, если наблюдатель имеет проблемы со зрением.

Мин. увеличение

Наименьшее увеличение, которое обеспечивает телескоп. Как и в случае максимального полезного увеличения (см. выше), в данном случае речь идёт не об абсолютно возможном минимуме, а о пределе, заходить за который не имеет смысла с практической точки зрения. В данном случае этот предел связан с размерами выходного зрачка телескопа — грубо говоря, пятнышка света, проецируемого окуляром на глаз наблюдателя. Чем меньше увеличение — тем крупнее выходной зрачок; если он становится больше, чем зрачок глаза наблюдателя, то часть света в глаз, по сути, не попадает, и эффективность оптической системы снижается. Минимальное увеличение — это такое увеличение, при котором диаметр выходного зрачка телескопа равен размеру зрачка человеческого глаза в ночных условиях (7 – 8 мм); также этот параметр называют «равнозрачковое увеличение». Использование телескопа с окулярами, обеспечивающими меньшие значения кратности, считается неоправданным.

Как правило, для определения равнозрачкового увеличения используют формулу D/7, где D — диаметр объектива в миллиметрах (см. выше): например, для модели с апертурой 140 мм минимальное увеличение будет составлять 140/7 = 20х. Однако эта формула справедлива только для ночного применения; при наблюдении днём, когда зрачок в глазу уменьшается в размере, фактические значения минимального увеличения будут больше — порядка D/2.

Светосила

Светосила телескопа характеризует общее количество света, «захватываемое» системой и передаваемое в глаз наблюдателя. С точки зрения цифр светосила — это соотношение между диаметром объектива и фокусным расстоянием (см. выше): например, для системы с апертурой 100 мм и фокусным расстоянием 1000 мм светосила будет составлять 100/1000 = 1/10. Также этот показатель называют «относительным отверстием».

При выборе по светосиле необходимо в первую очередь учитывать, для каких целей планируется применять телескоп. Крупное относительное отверстие весьма удобно для астрофотографии, т.к. обеспечивает пропускание большого количества света и позволяет работать с меньшими выдержками. А вот для визуальных наблюдений высокая светосила не требуется — даже наоборот, более длиннофокусные (и, соответственно, менее светосильные) телескопы характеризуются меньшим уровнем аберраций и позволяют применять для наблюдения более удобные окуляры. Также отметим, что большая светосила требует применения крупных объективов, что соответствующим образом сказывается на габаритах, весе и цене телескопа.

Разрешающая способность (Dawes)

Разрешающая способность телескопа, определённая согласно критерию Дауэса (Dawes). Также этот показатель называют «предел Дауэса». (Встречается также прочтение «Дейвса», но оно не является верным).

Разрешающая способность в данном случае — это показатель, характеризующий способность телескопа различить отдельные источники света, расположенные на близком расстоянии, иными словами — способность увидеть их именно как отдельные объекты. Измеряется этот показатель в угловых секундах (1'' — это 1/3600 часть градуса). На расстояниях, меньших, чем разрешающая способность, эти источники (например, двойные звёзды) будут сливаться в сплошное пятно. Таким образом, чем ниже цифры в данном пункте — тем выше разрешающая способность, тем лучше телескоп подходит для разглядывания близко расположенных объектов. Однако стоит учитывать, что в данном случае речь идёт не о возможности видеть полностью отдельные друг от друга объекты, а лишь о возможности опознать в вытянутом световом пятне два источника света, слившиеся (для наблюдателя) в один. Для того, чтобы наблюдатель мог видеть два отдельных источника, расстояние между ними должно быть приблизительно вдвое больше заявленной разрешающей способности.

Согласно критерию Дауэса разрешающая способность напрямую зависит от диаметра объектива телескопа (см. выше): чем крупнее апертура, тем меньше может быть угол между отдельно видимыми объектами и тем выше разрешающая способность. По общему принципу этот показатель аналогичен...критерию Рэлея (см. «Разрешающая способность (Rayleigh)»), однако он был выведен экспериментальным путём, а не теоретически. Поэтому, с одной стороны, предел Дауэса точнее описывает практические возможности телескопа, с другой — соответствие этим возможностям во многом зависит субъективных особенностей наблюдателя. Проще говоря, человек без опыта наблюдений за двойными объектами, или имеющий проблемы со зрением, может попросту «не узнать» в вытянутом пятне два источника света, если они будут располагаться на расстоянии, сравнимом с пределом Дауэса. Дополнительно о разнице между критериями см. «Разрешающая способность (Rayleigh)».

Разрешающая способность (Rayleigh)

Разрешающая способность телескопа, определённая согласно критерию Рэлея (Rayleigh).

Разрешающая способность в данном случае — это показатель, характеризующий способность телескопа различить отдельные источники света, расположенные на близком расстоянии, иными словами — способность увидеть их именно как отдельные объекты. Измеряется этот показатель в угловых секундах (1'' — это 1/3600 часть градуса). На расстояниях, меньших, чем разрешающая способность, эти источники (например, двойные звёзды) будут сливаться в сплошное пятно. Таким образом, чем ниже цифры в данном пункте — тем выше разрешающая способность, тем лучше телескоп подходит для разглядывания близко расположенных объектов. Однако стоит учитывать, что в данном случае речь идёт не о возможности видеть полностью отдельные друг от друга объекты, а лишь о возможности опознать в вытянутом световом пятне два источника света, слившиеся (для наблюдателя) в один. Для того, чтобы наблюдатель мог видеть два отдельных источника, расстояние между ними должно быть приблизительно вдвое больше заявленной разрешающей способности.

Критерий Рэлея является теоретической величиной и рассчитывается по довольно сложным формулам, учитывающим, помимо диаметра объектива телескопа (см. выше), также длину волны наблюдаемого света, расстояния между объектами и до наблюдателя и т.п. Отдельно видимыми, согласно данному методу, считаются объекты, расположенные на большем расстоянии друг от друга, чем для описанного выше пред...ела Дауэса; поэтому для одного и того же телескопа разрешающая способность по Рэлею будет ниже, чем по Дауэсу (а цифры, указанные в данном пункте — соответственно, больше). С другой стороны, данный показатель меньше зависит от личных особенностей пользователя: различить объекты на расстоянии, соответствующем критерию Рэлея, могут даже неопытные наблюдатели.

Окуляры

В данном пункте указываются окуляры, входящие в штатный комплект поставки телескопа, точнее — фокусные расстояния этих окуляров.

Имея эти данные и зная фокусное расстояние телескопа (см. выше), можно определить степени увеличения, которые устройство может выдавать в комплектации «из коробки». Для телескопа без линз Барлоу (см. ниже) и других дополнительных элементов подобного назначения кратность будет равна фокусному расстоянию объектива, поделенному на фокусное расстояние окуляра. Например, оптика на 1000 мм, укомплектованная «глазками» на 5 и 10 мм, будет способна выдать увеличения 1000/5=200х и 1000/10=100х.

При отсутствии подходящего окуляра в комплекте его, как правило, можно докупить отдельно.

Линза Барлоу

Кратность линзы Барлоу, предусмотренной в комплекте поставки телескопа.

Подобное приспособление (как правило, оно делается съёмным) представляет собой рассеивающую линзу или систему линз, устанавливаемую перед окуляром. Фактически линза Барлоу увеличивает фокусное расстояние телескопа, обеспечивая большую степень увеличения (и меньший угол обзора) при том же окуляре. При этом кратность увеличения с линзой можно подсчитать, помножив «родную» кратность с данным окуляром на кратность самой линзы: например, если телескоп с 10 мм окуляром обеспечивал степень увеличения 100х, то при установке 3х линзы Барлоу этот показатель составит 100х3=300х. Разумеется, того же эффекта можно добиться и при установке окуляра с уменьшенным фокусным расстоянием. Однако, во-первых, подобный окуляр не всегда может быть доступен для приобретения; во-вторых, одна линза Барлоу может применяться со всеми окулярами, подходящими для телескопа, расширяя арсенал доступных кратностей увеличения. Особенно такая возможность удобна в тех случаях, когда наблюдателю требуется обширный набор вариантов по степени увеличения. К примеру, набор из 4 окуляров и одной линзы Барлоу обеспечивает 8 вариантов кратности, при этом работать с таким набором удобнее, чем с 8 отдельными окулярами.